题意:
给出n个点,m次操作,
1 x y:查询区间x-y的和,2
l r x,区间l-r每个数都异或x;
思考: 我们可以很容易的想到,异或是在二进制上面进行的, 然后我们每次异或 其实就是反向的更改这一区间上面的数字, 数据的范围大概是在2^20内 所有我们可以直接建20颗线段树, 然后每个线段树 维护的是每个数的二进制数位上面的1, 最后查询的时候 将每个数都统计一下就好了
#include <bits/stdc++.h>
using namespace std;
#define cpp_io() {ios::sync_with_stdio(false); cin.tie(NULL);}
#define rep(i,a,n) for (int i=a;i<n;i++)
#define repp(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define CLR(a,b) memset(a,(b),sizeof(a))
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ls o<<1
#define rs o<<1|1
typedef long long ll;
typedef vector<int> VI;
const int MAXN = (int)1e5+10;
const int INF = 0x3f3f3f3f;
const int mod = (int)1e9+7;
void F() {
#ifndef ONILINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
}
int f[25][MAXN];
struct node {
int l,r,lazy,x,len;
}t[25][MAXN<<2];
void push_down(int o,int p){
if(t[p][o].lazy){
int x=t[p][o].len;
t[p][ls].x=x-(x/2)-t[p][ls].x;
t[p][rs].x=(x/2)-t[p][rs].x;
t[p][ls].lazy^=1;
t[p][rs].lazy^=1;
t[p][o].lazy=0;
}
}
void build(int l,int r,int o,int p){
t[p][o].l=l,t[p][o].r=r;t[p][o].lazy=0;
t[p][o].len=r-l+1;
if(l==r) {
t[p][o].x=f[p][l]; return;
}
int mid=(l+r)>>1;
build(l,mid,ls,p); build(mid+1,r,rs,p);
t[p][o].x=t[p][ls].x+t[p][rs].x;
}
inline void update(int l,int r,int o,int p){
if(t[p][o].l>=l&&t[p][o].r<=r) {
t[p][o].lazy^=1;
t[p][o].x= t[p][o].len-t[p][o].x;
return;
}
push_down(o,p);
int mid=(t[p][o].l+t[p][o].r)>>1;
if(r<=mid) update(l,r,ls,p);
else if(l>mid) update(l,r,rs,p);
else {
update(l,mid,ls,p); update(mid+1,r,rs,p);
}
t[p][o].x=t[p][ls].x+t[p][rs].x;
}
inline int query(int l,int r,int o,int p){
if(l<=t[p][o].l&&r>=t[p][o].r){
return t[p][o].x;
}
push_down(o,p);
int mid=(t[p][o].l+t[p][o].r)>>1;
if(r<=mid) return query(l,r,ls,p);
else if(l>mid) return query(l,r,rs,p);
else return query(l,mid,ls,p)+query(mid+1,r,rs,p);
}
int main() {
//F();
cpp_io();
int n; cin>>n;
repp(i,1,n) {
int x;cin>>x;
repp(j,0,20) f[j][i]=x%2,x/=2;
}
repp(i,0,20) build(1,n,1,i);
int q;cin>>q;
while(q--){
int op,l,r,z;
cin>>op;
if(op==1) {
cin>>l>>r;
ll ans=0;
per(i,0,21) {
// cout<<query(l,r,1,i)<<"---------\n";
ans=1LL*ans*2+query(l,r,1,i);
}
cout<<ans<<endl;
}
else {
cin>>l>>r>>z;
repp(i,0,20){
if(z&(1<<i))
update(l,r,1,i);
}
}
}
return 0;
}