Description
有N个人,每个人恰好欠另一个人Bi元钱,现在大家都没有钱,政府想要给其中一些人欠,使得大家都不欠别人钱。
如A欠B 50,B欠C 20,则当政府给A50元时,A会立刻用50还清和B的债务,B也会立刻用20还清和C的债务。
欠款必须一次还清。如A欠B 50, B欠A 50,你不能给A 49元让A还49元给B。
问政府至少花多少钱?
Input
第一行
N(2≤N≤200,000)
表示居民数
接下来
N
行, 每行有两个数
Output
如题
Sample Input
4
2 100
1 100
4 70
370
Sample Output
170
HINT
自己的题解
如果
i
欠
在这个图中如果一个点的入度为0(包括一个人的所有父亲都还清了债务这种情况,也就是说处理过程中入度变成了0),那么没有人会给他钱,那么政府就必须给这个人钱,使他还清债务。
没错,就是拓扑排序。
但是拓扑排序只适用于有向无环图,如果出现了环,那么这个环里的点都不会被遍历到。
没错,拓扑排序后每个点都处于一个环中,这时只要dfs找环即可。
接下来详细说明记录答案的方法:
这个样例有两个地方要注意:第一个是2号点收到了1还给他的30块钱后,要还给3号点的钱数是20块钱,也就是说2号点拿到钱后自己先保留10块钱;第二个是3号点收到了二号点的20块钱后,接下来应该直接给4号点10块钱,不需要等到找环时再进行寻找。
这个样例要注意的是:2在收到1给的10块钱后,接下来只需要给2号点5块就可以使得这里面的整个环都被满足。(具体如何寻找这个点请看代码)
这个样例中,2号点如果收到了1号点的10块之后还不足以还清欠下的债务,那么政府必须给2号点补贴10块钱。(具体如何实现还是看代码)
代码
#include <cstdio>
#include <algorithm>
const int maxn=200000;
const int inf=2000000000;
int n,have[maxn+10],ans;
int stack[maxn+10],head;
int son[maxn+10],need[maxn+10];
int ru[maxn+10],b[maxn+10];
int search(int now)
{
int res=0,r=now,f=inf;
if(need[now]+have[son[now]]<need[son[now]])
{
res+=need[son[now]]-need[now]-have[son[now]];
have[son[now]]=need[son[now]]-need[now];
}
now=son[now];
while(now!=r)
//寻找图3中描述的点并将给予的补贴计入答案
{
if(need[now]+have[son[now]]<need[son[now]])
{
res+=need[son[now]]-need[now]-have[son[now]];
have[son[now]]=need[son[now]]-need[now];
}
now=son[now];
}
while(!b[now])
//寻找图2中描述的点
{
b[now]=1;
f=std::min(f,std::max(need[now]-have[now],0));
now=son[now];
}
return res+f;
}
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
int s,v;
scanf("%d%d",&s,&v);
son[i]=s;
need[i]=v;
ru[s]++;
}
for(int i=1; i<=n; i++)
{
if(!ru[i])
{
head++;
stack[head]=i;
}
}
while(head)
{
int u=stack[head];
head--;
b[u]=1;
if(need[u]<=have[u])
{
have[u]-=need[u];
have[son[u]]+=need[u];
if(!b[son[u]])
{
ru[son[u]]--;
if(!ru[son[u]])
{
head++;
stack[head]=son[u];
}
}
}
else
{
ans+=need[u]-have[u];
have[u]+=need[u]-have[u];
have[son[u]]+=need[u];
have[u]-=need[u];
ru[son[u]]--;
if(!b[son[u]])
{
if((!ru[son[u]])||(need[son[u]]<=have[son[u]]))
//逻辑或后面的条件特判图1中的情况
{
head++;
stack[head]=son[u];
}
}
}
}
for(int i=1; i<=n; i++)
{
if(!b[i])
{
ans+=search(i);
}
}
printf("%d\n",ans);
return 0;
}