排序:
默认
按更新时间
按访问量

Kaggle第一次———Titanic: Machine Learning from Disaster

由于原始文件是ipython格式的,建议转到github下浏览 数据集地址:my github 背景介绍: 泰坦尼克号的沉没是历史上最臭名昭着的沉船之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在2224名乘客和机组人员中造成1502人死亡。造成海难失事的原因之一...

2018-09-05 19:34:01

阅读数:28

评论数:0

机器学习(三):逻辑回归之从理论到实践

一、基本理论   逻辑回归是一个二值型的分类器,它是利用Sigmoid函数来进行分类的,Sigmoid函数的表达式如下: g(z)=11+e−zg(z)=11+e−zg(z) = \frac{1}{1+e^{-z}} 其函数图像如下图: 结合表达式可以知道: 当z=0时,g(z)=0...

2018-06-09 17:22:05

阅读数:119

评论数:0

用python3实现差分进化算法(DE)

差分进化算法(Differential Evolution Algorithm,DE)是一种高效的全局优化算法。它也是基于群体的启发式搜索算法,群中的每个个体对应一个解向量。差分进化算法的进化流程则与遗传算法非常类似,都包括变异、杂交和选择操作,但这些操作的具体定义与遗传算法有所不同。 差分算法...

2018-05-19 16:35:13

阅读数:595

评论数:21

用python3实现粒子群优化算法(PSO)

粒子群优化算法(Particle Swarm Optimization,PSO)属于进化算法的一种,是通过模拟鸟群捕食行为设计的。从随机解出发,通过迭代寻找最优解,通过适应度来评价解的品质。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当...

2018-05-18 17:16:39

阅读数:626

评论数:10

安装x-pack的注意项

x-pack是一个集安全,警报,监视,报告和图形功能为一体的软件包。在es5.0.0之前,必须安装各种插件才有x-pack所具有的功能,有了x-pack后,减少了很多不必要的麻烦。如果是第一次安装x-pack,整个集群内的服务都需要重新启动(建议第一次装es等插件就把x-pack装上),并且每个节...

2017-12-14 17:10:55

阅读数:1063

评论数:5

LeetCode001~010

实验平台:LeetCode 代码地址:my github LeetCode001:两数之和 题目描述: 示例: 运行结果: 代码: class Solution { public int[] twoSum(int[] nums, int target) {...

2018-08-19 18:56:54

阅读数:33

评论数:0

LeetCode062:不同路径

实验平台:LeetCode 代码地址:my github 题目描述: 示例: 运行结果: 代码: class Solution { public int uniquePaths(int m, int n) { int[][] result =...

2018-08-12 21:23:56

阅读数:18

评论数:0

LeetCode055:跳跃游戏

实验平台:LeetCode 代码地址:my github 题目描述: 示例: 方法一 运行结果: 代码: class Solution { public boolean canJump(int[] nums) { int numLen ...

2018-08-12 17:10:13

阅读数:25

评论数:0

LeetCode072:编辑距离

题目描述: 示例: 运行结果: 代码: class Solution { public int minDistance(String word1, String word2) { char[] a = word1.toCharArray(); ...

2018-07-29 21:53:59

阅读数:45

评论数:0

LeetCode198:打家劫舍

题目描述: 示例: 运行结果: 代码: class Solution { public static int[] result; public int slove(int idx, int[] nums){ if(idx &...

2018-07-28 14:37:50

阅读数:40

评论数:0

四、用SVD压缩图像

矩阵的奇异值分解是矩阵的一种分解方式。我们可以利用矩阵的奇异值分解,提取矩阵的主要信息,从而通过比原矩阵少的数据量,来还原跟原矩阵差不多的信息。在python的numpy库中跟我们提供了svd分解的函数: U, S, VT = numpy.linalg.svd(matrix) 该函数返回2个矩...

2018-07-11 14:08:07

阅读数:61

评论数:0

三、用numpy.pad()对图像进行填充及简单的图像处理

一、用numpy.pad()对图像进行填 我们都知道在css的盒子模型中,有padding(内边距)这一属性。同css中的padding类似,在numpy中,numpy.pad()可以跟矩阵添加内边距,这一方法在CNN中的卷积层可以用到,可以影响到卷积后矩阵的维度,其用法如下: numpy.p...

2018-06-29 12:09:13

阅读数:393

评论数:0

二、使用scipy读图片并改变图片大小

1.scipy.ndimage.imread   scipy.ndimage.imread()方法在scipy的1.0.0版本中被丢弃了,在1.2.0版本中通过imageio.imread来调用该方法。由于我的scipy版本还是0.19.0版本的,所以我这里就直接通过scipy.ndimage....

2018-06-04 15:03:20

阅读数:271

评论数:0

机器学习(二):决策树之ID3

文中的代码和数据集下载地址: https://github.com/TimePickerWang/MachineLearningInAction  介绍决策树之前先介绍两个信息论里的概念:熵和信息增益。  1.熵:代表了信息的混乱程度。也就是说熵越高,混合的数据越多,越无序。熵的计算方式如...

2018-06-02 17:14:49

阅读数:59

评论数:0

机器学习(一):k-近邻算法(kNN)

k-近邻算法是一个比较简单的算法,它的基本思路是这样的:存在一个样本数据集(即训练集),样本集中的每个样本都存在标签(目标变量),即我们知道样本集中每一数据与所属分类的对应关系。在输入没有标签的新数据后,将新数据和样本集中的每个样本进行比较,然后用算法提取样本集中和待分类样本最相似的前k个样本,然...

2018-05-23 15:56:09

阅读数:96

评论数:0

用python绘制评估优化算法性能的测试函数

测试函数主要是用来评估优化算法特性的,这里我用python3绘制了部分测试函数的图像。具体的测试函数可以结合维基百科来了解。想要显示某个测试函数的图片把代码结尾对应的注释去掉即可,具体代码如下: import numpy as np import matplotlib.pyplot as p...

2018-05-16 14:41:30

阅读数:289

评论数:0

八大排序(五):基数排序

基数排序与之前的其他七种排序方法都不同,它不需要比较关键字的大小。 以下用一个例子来讲解基数排序: 假设有一个数组:73, 22, 93, 43, 55, 14, 28, 65, 39, 81 1.首先根据个位数的数值,在走访数值时将它们分配至编号0到9的桶子中,分配结果如下图: 2....

2018-05-07 19:33:03

阅读数:30

评论数:0

八大排序(四):堆排序

堆的定义 堆是具有以下性质的完全二叉树: 每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆 如下图所示: 对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子 以上数组从逻辑上讲就是一个堆结构,用简单...

2018-05-07 18:31:06

阅读数:59

评论数:0

八大排序(三):快速排序

快速排序的基本思想如下: 设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。值得注意的是,快速排序是一种不稳定的排序算法,也就是说,多个相同的值的相对位置也...

2018-05-07 16:36:01

阅读数:58

评论数:0

八大排序(二):归并排序

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。分治法即将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案”修补”在一起,归并排序的速度仅次...

2018-05-06 21:09:18

阅读数:63

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭