四、用SVD压缩图像

本文介绍了如何利用矩阵奇异值分解(SVD)进行图像压缩。通过选取奇异值向量中的前k个最大值(通常k个奇异值之和约占总和的90%),可以重构接近原始图像的内容。在Python的numpy库中,可以使用svd函数进行分解。实验中,选择前30个奇异值来还原灰度图像,虽然图像会变模糊,但仍能辨认物体,且压缩后的图像大小减少了约10倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的奇异值分解是矩阵的一种分解方式。我们可以利用矩阵的奇异值分解,提取矩阵的主要信息,从而通过比原矩阵少的数据量,来还原跟原矩阵差不多的信息。在python的numpy库中跟我们提供了svd分解的函数:

U, S, VT = numpy.linalg.svd(matrix)

该函数返回2个矩阵U、VT和1个1维的奇异值向量,这是因为奇异值矩阵是一个对角矩阵,除了对角元素外其他元素都为0,转为向量可以节省空间。我们可以通过观察奇异值向量,选取前k个奇异值(一般这k个奇异值之和占所有奇异值之和的90%)来还原原矩阵,还原方式如下:

import numpy as np

sig = np.eye(k) * sigma[: k]  # 将奇异值向量的前k个奇异值转为对角矩阵
# 前k个奇异值对应矩阵U的前k列,对应矩阵VT的前k行,可以结合下图观察
new_matrix= np.dot(np.dot(U[:, :k], sig), VT[:k, :]) 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值