链接:https://www.nowcoder.com/acm/contest/86/E
来源:牛客网
题目描述
坎为水,险阳失道,渊深不测;离为火,依附团结,光明绚丽。
坎卦:水洊至,习坎;君子以常德行,习教事。一轮明月照水中,只见影儿不见踪,愚夫当财下去取,摸来摸去一场空。
离卦:明两作,离,大人以继明照四方。官人来占主高升,庄农人家产业增,生意买卖利息厚,匠艺占之大亨通。
有一些石子堆,第 堆有 个石子。你和算卦先生轮流从任一堆中任取若干颗石子(每次只能取自一堆,并且不能不取),取到最后一颗石子的人获胜。
算卦先生来问你,如果你先手,你是否有必胜策略?若是改动其中几个石子堆中石子的数量呢?
输入描述:
第一行两个正整数 ,表示有 个石堆, 次操作。
第二行 个整数,第 个数 表示第 个石堆初始有 个石子。
接下去 行,每行两个正整数 ,表示把第 堆石子的个数修改成 。操作是累计的,也就是说,每次操作是在上一次操作结束后的状态上操作的。
输出描述:
共 行,输出每次操作之后先手是否有必胜策略。
如果有,输出 ,否则输出 。
输入
5 4
6 7 3 4 5
1 6
2 1
2 4
5 5
输出
Kan
Kan
Li
Li
备注:
利用异或运算,如果所有堆中的数异或的结果不为0,则先取者获胜。(这个好像叫什么奇异局势)
该题的思想可以看这里
该题需要注意的是异或运算应该在输入后就进行,不能在后面更改元素后用循环来算,会TLE。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+10;
ll a[maxn];
int main()
{
ll n,q;
ll x,y;
ll sum=0;
scanf("%lld%lld",&n,&q);
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
sum=a[1];
for(int i=2;i<=n;i++)
{
sum=sum^a[i];
}//这步操作不能放在后面的循环中
while(q--)
{
scanf("%lld%lld",&x,&y);
ll mm=a[x]^y;//mm记录a[x]和y的异或值
a[x]=y;//更改a[x]的值
sum=sum^mm;
if(sum) printf("Kan\n");
else printf("Li\n");
}
return 0;
}