Using CUDA/GPU in Fortran

Using CUDA/GPU in Fortran

To leverage GPU acceleration in Fortran, you have several options. Here are the main approaches:

1. CUDA Fortran (NVIDIA’s Proprietary Extension)

CUDA Fortran is an extension to Fortran provided by NVIDIA through the PGI (now NVIDIA) compiler.

Setup:

  • Install NVIDIA HPC SDK (includes the nvfortran compiler)
  • Requires NVIDIA GPU with CUDA support

Basic Example:

! Vector addition on GPU
module vecadd
  contains
    attributes(global) subroutine add(a, b, c, n)
      real :: a(*), b(*), c(*)
      integer, value :: n
      integer :: i
      
      i = (blockIdx%x-1)*blockDim%x + threadIdx%x
      if (i <= n) c(i) = a(i) + b(i)
    end subroutine add
end module vecadd

program main
  use cudafor
  use vecadd
  implicit none
  
  integer, parameter :: n = 10000
  real :: a(n), b(n), c(n)
  real, device :: a_d(n), b_d(n), c_d(n)
  type(dim3) :: grid, block
  
  ! Initialize arrays
  a = 1.0; b = 2.0
  
  ! Copy to device
  a_d = a; b_d = b
  
  ! Configure kernel launch
  block = dim3(256,1,1)
  grid = dim3(ceiling(real(n)/block%x),1,1)
  
  ! Launch kernel
  call add<<<grid,block>>>(a_d, b_d, c_d, n)
  
  ! Copy back result
  c = c_d
  
  ! Verify
  print *, maxval(abs(c-3.0))
end program main

2. OpenACC (Directive-Based Approach)

OpenACC uses compiler directives to offload computation to GPUs.

Example:

program vecadd
  implicit none
  integer, parameter :: n = 1000000
  real :: a(n), b(n), c(n)
  integer :: i
  
  ! Initialize arrays
  !$acc parallel loop
  do i = 1, n
    a(i) = 1.0
    b(i) = 2.0
  end do
  
  ! Vector addition on GPU
  !$acc parallel loop
  do i = 1, n
    c(i) = a(i) + b(i)
  end do
  
  ! Verify
  print *, maxval(abs(c-3.0))
end program vecadd

3. OpenMP Offload (Modern Alternative)

Recent versions of OpenMP support GPU offloading.

Example:

program vecadd
  implicit none
  integer, parameter :: n = 1000000
  real :: a(n), b(n), c(n)
  integer :: i
  
  ! Initialize arrays
  !$omp target teams distribute parallel do map(tofrom: a, b)
  do i = 1, n
    a(i) = 1.0
    b(i) = 2.0
  end do
  
  ! Vector addition on GPU
  !$omp target teams distribute parallel do map(to: a, b) map(from: c)
  do i = 1, n
    c(i) = a(i) + b(i)
  end do
  
  ! Verify
  print *, maxval(abs(c-3.0))
end program vecadd

4. ISO_C_BINDING with CUDA C

You can write CUDA kernels in C and call them from Fortran.

C kernel (vecadd.cu):

__global__ void vecadd_kernel(float *a, float *b, float *c, int n) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < n) c[i] = a[i] + b[i];
}

extern "C" void launch_vecadd(float *a_d, float *b_d, float *c_d, int n) {
    dim3 block(256);
    dim3 grid((n + block.x - 1) / block.x);
    vecadd_kernel<<<grid, block>>>(a_d, b_d, c_d, n);
}

Fortran caller:

program main
  use iso_c_binding
  implicit none
  
  interface
    subroutine launch_vecadd(a, b, c, n) bind(C)
      use iso_c_binding
      type(c_ptr), value :: a, b, c
      integer(c_int), value :: n
    end subroutine
  end interface
  
  ! ... rest of the code similar to CUDA Fortran example ...
end program

Compilation:

For CUDA Fortran:

nvfortran -Mcuda myprogram.f90

For OpenACC:

nvfortran -acc myprogram.f90

For OpenMP Offload (with GCC):

gfortran -fopenmp -foffload=nvptx-none myprogram.f90

Considerations:

  1. Portability: OpenACC and OpenMP are more portable than CUDA Fortran
  2. Performance: CUDA Fortran often gives the best performance and control
  3. Compiler Support: Check which options your compiler supports
  4. Debugging: NVIDIA Nsight tools can help debug GPU Fortran code

Would you like more details on any specific approach?

内容概要:本文主要介绍了MySQL元数据的概念及其获取方式。MySQL元数据是关于数据库和其对象(如表、列、索引等)的信息,存储在系统表中,这些表位于information_schema数据库中。文章详细列举了多种常用的MySQL元数据查询命令,如查看所有数据库(SHOW DATABASES)、选择数据库(USE database_name)、查看数据库中的所有表(SHOW TABLES)、查看表的结构(DESC table_name)、查看表的索引(SHOW INDEX FROM table_name)、查看表的创建语句(SHOW CREATE TABLE table_name)、查看表的行数(SELECT COUNT(*) FROM table_name)、查看列的信息以及查看外键信息等。此外,还介绍了information_schema数据库中的多个表,包括SCHEMATA表、TABLES表、COLUMNS表、STATISTICS表、KEY_COLUMN_USAGE表和REFERENTIAL_CONSTRAINTS表,这些表提供了丰富的元数据信息,可用于查询数据库结构、表信息、列信息、索引信息等。最后,文章还给出了获取查询语句影响的记录数的Perl和PHP实例,以及获取数据库和数据表列表的方法。 适合人群:对MySQL数据库有一定了解,想要深入学习MySQL元数据获取和使用的数据库管理员或开发人员。 使用场景及目标:①帮助用户掌握MySQL元数据的获取方法,以便更好地管理和维护数据库;②通过查询information_schema数据库中的系统表,深入了解数据库结构、表信息、列信息、索引信息等;③提供Perl和PHP实例,方便用户在不同编程环境中获取查询语句影响的记录数和数据库及数据表列表。 其他说明:在使用上述SQL语句时,请注意将查询中的'your_database_name'和'your_table_name'替换为实际的数据库名和表名。此外,在获取数据库和数据表列表时,如果没有足够的权限,结果将返回null。
### OpenCL 和 CUDA 的区别及应用场景 #### 平台兼容性 OpenCL 是一种开放标准,支持多种类型的硬件平台,包括但不限于 AMD、Intel 和 NVIDIA 设备。这种跨厂商的支持使得开发者可以编写一次代码,在不同品牌的 GPU 上运行[^1]。 相比之下,CUDA 是由 NVIDIA 开发并主要针对其自家 GPU 的编程模型。尽管存在一些第三方工具试图扩展 CUDA 对其他硬件的支持,但在实际应用中仍受限于 NVIDIA 硬件环境[^2]。 #### 编程复杂度 对于熟悉 C/C++ 或者 Fortran 的开发人员来说,学习 OpenCL 可能会更加容易上手,因为它的 API 更加贴近这些传统语言结构。然而,这并不意味着简单;相反,为了实现最佳性能优化,仍然需要深入了解底层架构特性[^3]。 另一方面,虽然 CUDA 提供了一套相对直观易学的语法糖衣——特别是当涉及到流控制和其他高级功能时——但它紧密绑定到特定供应商的技术文档和库函数调用方式之上,这意味着如果想要充分利用所有可用资源,则必须深入研究 NVIDIA 特定指南资料[^4]。 #### 应用场景 - **科学计算领域**:如分子动力学仿真软件 NAMD 所展示的结果表明,在多 GPU 配置下,并不是所有的应用程序都能获得线性的加速效果。某些情况下增加更多数量级的 GPU 不仅不会带来显著提升反而可能导致效率下降。因此选择合适的框架至关重要[^5]。 如果目标是构建一个能够适应未来可能更换的不同品牌 GPU 资源池的应用程序,那么采用 OpenCL 将是一个明智的选择。它允许更灵活地应对硬件变化而不必重写核心算法逻辑[^6]。 - **工业界专用解决方案**:许多商业产品和服务已经围绕着 CUDA 构建起了完整的生态系统,尤其是在深度学习训练方面表现尤为突出。TensorFlow、PyTorch 这样的机器学习框架都提供了良好的 CUDA 支持,从而简化了从原型设计到大规模部署的过程[^7]。 ```cpp // Example of simple vector addition using OpenCL #include <CL/cl.h> ... cl_int err; size_t global_size = count; err = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, &global_size, NULL, 0, NULL, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to execute kernel! %d\n", err); } ``` ```cuda // Simple Vector Addition on CUDA __global__ void add(int n, float *x, float *y) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < n) y[index] = x[index] + y[index]; } int main() { ... add<<<blocksPerGrid, threadsPerBlock>>>(N, d_x, d_y); cudaDeviceSynchronize(); ... } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值