记录:
225.5.10
题目:
思路:
1.计算数组的和和零的存在情况:对于每个数组,计算其总和并记录是否存在零。零的存在意味着我们可以通过替换零来调整数组的和。
2.判断是否可以调整和相等:如果一个数组没有零且其和小于另一个数组的和,那么无法通过替换零来调整和,返回 -1。反之则如果另一个数组没有零且其和小于第一个数组的和,返回 -1。
3.计算最小和:如果可以调整和相等,则最小和是两个数组原始和中的较大值。因为零可以被替换成至少1,所以总和至少是原始和加上零的个数(每个零至少替换为1)。
解题步骤:
1.遍历数组计算初始和与零的个数:
sum1 和 sum2 分别记录两个数组非零元素的和。
hasZero1 和 hasZero2 标记是否存在零。
zeroCount1 和 zeroCount2 统计零的数量。
2.计算最小可能和:
minSum1 和 minSum2 分别为两个数组的最小可能和(零替换为1后的和)。
3.调整可能性判断:
若一个数组无零且其最小和小于另一个数组的最小和,无法调整,返回-1。
否则,返回两数组最小可能和的较大值,确保两者可通过调整零达到该和。
代码:
class Solution {
private record Pair(long sum, boolean zero) {}
public long minSum(int[] nums1, int[] nums2) {
Pair p1 = calc(nums1);
Pair p2 = calc(nums2);
if (!p1.zero && p1.sum < p2.sum || !p2.zero && p2.sum < p1.sum) {
return -1;
}
return Math.max(p1.sum, p2.sum);
}
private Pair calc(int[] nums) {
long sum = 0;
boolean zero = false;
for (int x : nums) {
if (x == 0) {
zero = true;
sum++;
} else {
sum += x;
}
}
return new Pair(sum, zero);
}
}
复杂度:
O(N)
O(1)