广场舞--2016蓝桥杯 国赛 JAVA A组 第5题

本文介绍了一种计算多边形广场内最多可容纳跳广场舞市民人数的方法。广场由地板砖构成,每块完整的砖被视为一个跳舞位置。通过输入多边形顶点坐标,程序判断广场内部完整的砖数量,进而得出最多可同时跳舞的市民人数。
摘要由CSDN通过智能技术生成

最容易理解的一到题目了,可是各种方法都有找不到可以实现的细节。原博主用到了三角函数,确实思维广阔,美中不足的是所有变必须按照正确的顺序输入,程序也会按照输入的顺序连线,输入点的顺序不对,连线后得不到正确的多边形,结果也就不对了。

不过还是感谢博主分享。原博请见:http://blog.csdn.net/liutaotaotaotaotao/article/details/71898497

广场舞
LQ市的市民广场是一个多边形,广场上铺满了大理石的地板砖。
地板砖铺得方方正正,就像坐标轴纸一样。
以某四块砖相接的点为原点,地板砖的两条边为两个正方向,一块砖的边长为横纵坐标的单位长度,则所有横纵坐标都为整数的点都是四块砖的交点(如果在广场内)。
广场的砖单调无趣,却给跳广场舞的市民们提供了绝佳的参照物。每天傍晚,都会有大批市民前来跳舞。
舞者每次都会选一块完整的砖来跳舞,两个人不会选择同一块砖,如果一块砖在广场边上导致缺角或者边不完整,则没人会选这块砖。
(广场形状的例子参考【图1.png】)
现在,告诉你广场的形状,请帮LQ市的市长计算一下,同一时刻最多有多少市民可以在广场跳舞
【输入格式】
输入的第一行包含一个整数n,表示广场是n边形的(因此有n个顶点)。
接下来n行,每行两个整数,依次表示n边形每个顶点的坐标(也就是说广场边缘拐弯的地方都在砖的顶角上。数据保证广场是一个简单多边形。
【输出格式】
输出一个整数,表示最多有多少市民可以在广场跳舞。


【样例输入】
5
6 4
3 3
4 1
0 4
1 -1
【样例输出】
7


【样例说明】
广场如图1.png所示,一共有7块完整的地板砖,因此最多能有7位市民一起跳舞。

【数据规模与约定】
对于30%的数据,n不超过100,横纵坐标的绝对值均不超过100。
对于50%的数据,n不超过1000,横纵坐标的绝对值均不超过1000。
对于100%的数据,n不超过1000,横纵坐标的绝对值均不超过100000000(一亿)。

资源约定:
峰值内存消耗 < 256M
CPU消耗  < 1000ms


请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。


所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
package 总决赛;
import java.util.Scanner;  
import java.io.*;
public class 广场舞 {
	public static int all_sum=0;  
    
    public static void main(String[] args) {  
        Scanner scanner=new Scanner(System.in);  
        int n=scanner.nextInt();  
        int [][]points=new int[n][2];  
        int max_x=Integer.MIN_VALUE,max_y=Integer.MIN_VALUE;  
        int min_x=Integer.MAX_VALUE,min_y=Integer.MAX_VALUE;  
        for(int i=0;i<n;i++){  
            points[i][0]=scanner.nextInt();  
            points[i][1]=scanner.nextInt();  
            
            if(points[i][0]>max_x)max_x=points[i][0];  
            if(points[i][0]<min_x)min_x=points[i][0];
            
            if(points[i][1]>max_y)max_y=points[i][1];  
            if(points[i][1]<min_y)min_y=points[i][1];  
        }  
        for(int i=min_x;i<max_x;i++){  //x的最小值到最大值
            for(int j=min_y;j<max_y;j++){  //y的最小值到最大值
            	//判读右、下、右下(对角)点是否在里面
                if(judge_point_is_in(points, i, j)&&judge_point_is_in(points, i+1, j)&&judge_point_is_in(points, i, j+1)&&judge_point_is_in(points, i+1, j+1)){  
                    all_sum++;  
                }  
            }  
        }  
        System.out.println(all_sum);  
          
    }  
      
    public static boolean judge_point_is_in(int [][]points,int x,int y){  //(x,y)是否在里面
        boolean result=false;  
        int i=0,j=points.length-1;  //从第一个和最后一个向中间比较
        for(;i<points.length;i++){  
        	//               各点y坐标值的最小值                         y坐标值的最大值
            if(Math.min(points[i][1], points[j][1])<y&&Math.max(points[i][1], points[j][1])>=y){  
                double temp=(double)points[i][0]+(double)(( (double) (y-points[i][1])/(double)(points[i][1]-points[j][1]))*((double)(points[i][0]-points[j][0])));  
                if(temp<x){  
                    result=!result;  
                }  
            }  
            j=i;  
        }  
        return result;  
    }
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值