CDOJ1073-秋实大哥与线段树 线段树单点更新+区间求和

本文介绍了一个使用线段树解决的编程题目,通过实例演示了如何实现线段树的构建、更新及查询操作,并提供了完整的AC代码。

秋实大哥与线段树

Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others)
 

“学习本无底,前进莫徬徨。” 秋实大哥对一旁玩手机的学弟说道。

秋实大哥是一个爱学习的人,今天他刚刚学习了线段树这个数据结构。

为了检验自己的掌握程度,秋实大哥给自己出了一个题,同时邀请大家一起来作。

秋实大哥的题目要求你维护一个序列,支持两种操作:一种是修改某一个元素的值;一种是询问一段区间的和。

Input

第一行包含一个整数 n n,表示序列的长度。

接下来一行包含 n n个整数 ai ai,表示序列初始的元素。

接下来一行包含一个整数 m m,表示操作数。

接下来 m m行,每行是以下两种操作之一:

1 x v : 表示将第x个元素的值改为v
2 l r : 表示询问[l,r]这个区间的元素和

1nmvai100000 1≤n,m,v,ai≤100000 1lrn 1≤l≤r≤n

Output

对于每一个 2 2  l l  r r操作,输出一个整数占一行,表示对应的答案。

Sample Input Sample Output
3
1 2 3
3
2 1 2
1 1 5
2 1 2
3
7
解题思路:题目要求使用线段树,所以是用线段树来解决这道问题,其他方法会超时,这题只涉及到了线段树的单点更新和线段树的区间求和,所以比较简单,思路正确小心敲代码就可以了,没有什么坑点,具体线段树的一些知识不懂的可以看我的博客: 点击打开链接http://blog.csdn.net/wang_heng199/article/details/74938672

ac代码:

/*
线段树模板题,基础题,一定要搞懂 
*/
#include <cstdio> 
#include <iostream>
using namespace std;
#define maxn 100005
#define ll long long
ll sum[maxn<<2];
void Build(int l, int r, int rt)//建树 
{
	if(l == r)
	{
	  scanf("%lld", &sum[rt]);
	  return ;
	}
	int m = (l + r) >> 1;
	Build(l, m, rt<<1);
	Build(m+1, r, rt<<1|1);	
	sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void update(int l, int r, int t, ll c, int rt)//更新 
{
	if(l == r)
	{
		 sum[rt] = c;
		 return ;
	}
	int m = (l + r) >> 1;
	if(t <= m) update(l, m, t, c, rt<<1);
	else update(m+1, r, t, c, rt<<1|1);
	sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
ll query(int L, int R, int l, int r, int rt)//查询 
{
	if(l >= L && r <= R)
	{
	return sum[rt]	;
	}
	int m = (l + r) >> 1;
	ll res = 0;
	if(m >= L) res += query(L, R, l, m, rt<<1);
	if(m < R) res += query(L, R, m+1, r, rt<<1|1);
	return res;
}
int main()
{
	int n, m, a, b;
	ll c;
	scanf("%d", &n);
	Build(1, n, 1);
	scanf("%d", &m);
	while(m--)
	{
	   scanf("%d%d%lld", &a, &b, &c);
	   if(a == 1){
			update(1, n, b, c, 1);
	   }
	   else printf("%lld\n", query(b, c, 1, n, 1));
	}
	return 0;
}

题目链接: 点击打开链接http://acm.uestc.edu.cn/#/problem/show/1073



### CDOJ 300 木杆上的蚂蚁 #### 题目描述 题目涉及若干只蚂蚁在一个长度为 \( L \) 的水平木杆上移动。每只蚂蚁初始位置和方向已知,当两只蚂蚁相遇时会立即掉头反向行走。目标是计算所有蚂蚁最终离开木杆的时间以及它们的顺序。 --- #### 解决方案概述 该问题的核心在于模拟蚂蚁的行为并处理碰撞事件。尽管表面上看起来需要复杂的碰撞检测逻辑,但实际上可以通过一种巧妙的方式简化问题:假设蚂蚁在碰撞时不改变方向,则可以忽略碰撞的影响[^2]。因此,只需关注每只蚂蚁到达木杆两端所需时间即可。 以下是解决问题的主要思路: 1. **输入解析** 输入数据包括测试用例数量 \( T \),每个测试用例包含木杆长度 \( L \) 和蚂蚁的数量 \( N \)。对于每只蚂蚁,记录其初始位置和移动方向(左或右)。 2. **时间和顺序计算** 对于每只蚂蚁: - 如果它朝左移动,则离木杆左侧的距离为其当前位置; - 如果它朝右移动,则离木杆右侧的距离为 \( L - \text{当前蚂蚁的位置} \)。 将这些距离存储下来,并按升序排列以确定蚂蚁离开木杆的顺序。 3. **输出结果** 输出每只蚂蚁离开木杆的时间及其编号。 --- #### Python 实现代码 以下是一个完整的 Python 实现: ```python t = int(input()) # 测试用例数量 for case in range(1, t + 1): n, l = map(int, input().split()) # 蚂蚁数量和木杆长度 ants = [] for _ in range(n): idx, pos, direction = input().split() idx = int(idx) pos = int(pos) if direction == 'L': time_to_fall = pos # 到达左边所需时间 else: time_to_fall = l - pos # 到达右边所需时间 ants.append((time_to_fall, idx)) # 按照掉落时间排序 sorted_ants_by_time = sorted(ants, key=lambda x: x[0]) # 提取原始索引以便后续匹配 original_indices = list(range(len(sorted_ants_by_time))) # 打印结果 print(f"Case #{case}:") for ant_index in original_indices: print(sorted_ants_by_time[ant_index][1], end=" ") print() ``` --- #### 关键点解释 1. **碰撞不影响总时间** 假设蚂蚁在碰撞时不改变方向,则整个过程中的最大时间为任意一只蚂蚁到最近端点的最大距离。这使得我们可以跳过复杂的状态更新操作[^2]。 2. **效率优化** 使用内置函数 `sorted` 可以高效完成排序任务,算法整体复杂度为 \( O(N \log N) \)。 3. **边界条件** 特殊情况包括仅有一只蚂蚁的情况或者所有蚂蚁都朝同一方向移动的情形。程序应能正确处理此类场景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值