Python学习笔记 - 函数式编程
根据廖雪峰的Python教程做成的笔记,其中不包含全部知识点,仅是重点或是容易发生混淆或者忘记的部分。
函数式编程特点:
允许把函数本身作为参数传入另一个函数,还允许返回一个函数。
1.高阶函数
变量可以指向函数,类似于C++中函数指针的概念:
func = abs
func(-6)
也可以把函数名作为参数传入另一个函数:
def add(x, y, f)
return f(x) + f(y)
调用:
add(-5, 6, abs)
1.1 map/reduce
Python内建了map()和reduce()函数。
1.1.1 map()函数
map函数接收两个参数:函数、Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
例1:有一个函数f(x) = x²,要把这个函数作用在一个list [1,2,3,4,5,6,7,8,9]上。
# 函数定义:
def f(x):
return x * x
# 函数调用:
r = map(f, [1,2,3,4,5,6,7,8,9])
L = list(r)
# r = [1,4,9,16,25,36,49,64,81]
1.1.2 reduce()函数
reduce
把一个函数作用在一个序列[x1,x2,x3,...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素作累计运算。
例1:对一个序列求和。
from functools import reduce
# 函数定义
def add(x, y):
return x + y
# 函数调用
sum = reduce(add, [1,3,5,7,9])
# sum = ((((1 + 3) + 5) + 7) + 9) = 25
例2:把序列
[1,3,5,7,9]
变成整数13579
def fn(x, y):
return x * 10 + y
ret = reduce(fn, [1,3,5,7,9])
# ret = 13579
例3:利用map/reduce实现str2int函数
def str2int(s):
def fn(x, y):
return x * 10 + y
def char2num(ch):
m = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7':7, '8': 8, '9': 9}
return m[ch]
return reduce(fn, map(char2num, s))
# 调用:
ret = str2int('10086')
1.2 filter
Python内建的filter函数用于过滤序列,和map()
一样也是接收一个函数和一个序列,不同的是filter()
把传入的函数依次作用于每个元素,然后根据返回值是True
还是False
决定保留还是丢弃该元素(True
删除,False
保留)。
例1:在一个list中,删掉偶数,只保留奇数。
def is_odd(n):
return n % 2 == 1
list(filter(is_odd, [1,2,4,5,6,9,10,15]))
# 结果:[1,5,9,15]
例2:把一个序列中的空字符串删掉。
def not_empty(s):
return s and s.strip()
list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果:['A', 'B', 'C']
1.3 sorted
排序算法,可对数字及字符串排序,或者更加复杂的数据结构。
1.3.1 数字排序
默认按照升序排列,还可以接收一个key
,指定排序方式,key
可以自定义函数。
例1:一般排序
L = [36, 5, -12, 9, -21]
L1 = sorted(L)
print(L1)
# 结果[-21, -12, 5, 9, 36]
例2:按照绝对值排序
L = [36, 5, -12, 9, -21]
L1 = sorted(L, key = abs)
print(L1)
# 结果[36, 5, -12, 9, -21]
1.3.2 字符串排序
默认情况下,对字符串排序,是按照ASCII的大小比较的,由于’Z’ < ‘a’,结果,大写字母Z会排在小写字母a的前面。
例1:一般排序
L = ['bob', 'about', 'Zoo', 'Credit']
L1 = sorted(L)
print(L1)
# 结果['Credit', 'Zoo', 'about', 'bob']
例2:忽略大小写排序
L = ['bob', 'about', 'Zoo', 'Credit']
L1 = sorted(L, key = str.lower)
print(L1)
# 结果['about', 'bob', 'Credit', 'Zoo']
例3:反向排序
L = ['bob', 'about', 'Zoo', 'Credit']
L1 = sorted(L, key = str.lower, reverse = True)
print(L1)
# 结果['Zoo', 'Credit', 'bob', 'about']
1.3.4 复杂数据结构的排序
例1:对学生的考试成绩按照姓名进行排序。
def by_name(t):
return t[0]
L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]
L_ByName = sorted(L, key = by_name)
print('L_ByName = ', L_ByName)
# 结果L_ByName = [('Adam', 92), ('Bart', 66), ('Bob', 75), ('Lisa', 88)]
例2:考试成绩从高到低排序。
def by_score(t):
return t[1]
L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]
L_ByScore = sorted(L, key = by_score, reverse=True)
print('L_ByScore = ', L_ByScore)
# 结果L_ByScore = [('Adam', 92), ('Lisa', 88), ('Bob', 75), ('Bart', 66)]
2.返回函数
高阶函数不仅可以作为参数传递,还可以作为函数的返回值。
一个可变参数的求和函数可以像下面这么实现:
def calcSum(*args):
sum = 0;
for x in args:
sum = sum + x
return sum
但如果我们不需要立刻求和,而是在后面的代码中需要的场合再计算,这种场景我们就可以用到返回函数,不返回求和结果,而是返回求和的函数:
def lazySum(*args):
def calcSum():
sum = 0
for x in args:
sum = sum + x
return sum
return calcSum
当我们调用lazySum()
的时候,返回的并不是求和结果,而是求和的函数。调用求和函数后,才完成真正的求和计算。
func = lazySum(1, 2, 3)
result = func()
print(result)
特点:
- 内部函数calcSum可以引用外部函数lazySum的参数和局部变量,当lazySum返回函数calcSum时,相关参数和变量都保存在返回的函数中,这种称为“闭包(Closure)”的程序结构拥有极大的威力。
- 当我们调用lazy_sum()时,每次调用都会返回一个新的函数,即使传入相同的参数:
>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False
注意事项:
- 返回函数不要引用任何循环变量,或者后续会发生变化的变量!!!
def count():
fs = []
for i in range(1, 4):
def f():
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
print('f1 = ',f1())
print('f2 = ',f2())
print('f3 = ',f3())
# 想定结果:f1 = 1 f2 = 4 f3 = 9
# 实际结果:f1 = 9 f2 = 9 f3 = 9
# 原因就在于返回的函数引用了变量i,但它并非立刻执行。等到3个函数都返回时,它们所引用的变量i已经变成了3,因此最终结果为9。
3.匿名函数
3.1 匿名函数
没有名字的函数,用关键字lambda
标识,写起来更加简洁。
lambda函数表达式形式:入参 : 函数体
list(map(lambda x:x * x, [1,2,3,4,5,6,7,8,9]))
其等同于
def func(x):
return x * x
list(map(func, [1,2,3,4,5,6,7,8,9]))
3.2 匿名函数赋值
和一般函数一样,可以匿名函数也可以赋值给一个变量:
func = lambda x:x * x
ret = func(5)
print(ret)
# 结果: 25
3.3 匿名函数作为返回值
def build(x, y):
return lambda:
限制:
匿名函数只能有一个表达式,不用写return
,返回值就是该表达式的结果。
4. 装饰器
4.1 一般装饰器
在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
假设有函数now():
def now():
print(2018-01-02)
return
想在now()
调用前后自动打印log,但又不希望修改now()
函数的定义,则可以用装饰器实现。
def log(func):
def wrapper(*args, **kw):
print(call is s% % func.__name__)
return func(*args, **kw)
return wrapper
# 使用装饰器修饰now()函数
@log
def now():
print('2018-01-02')
return
4.2 带参数的装饰器
def log(text):
def decorator(func):
def wrapper(*arg, **kw):
print('%s %s' % (text, func.__name__))
return func(*arg, **kw)
return wrapper
return decorator
# 应用
@log('excute')
def now():
print('2018-01-02')
return
now()
# 结果: excute now()