【LeetCode每日一题】【2023/2/8】1233. 删除子文件夹


1233. 删除子文件夹

LeetCode: 1233. 删除子文件夹

中等 \color{#FFB800}{中等} 中等

你是一位系统管理员,手里有一份文件夹列表 folder,你的任务是要删除该列表中的所有 子文件夹,并以 任意顺序 返回剩下的文件夹。

如果文件夹 folder[i] 位于另一个文件夹 folder[j] 下,那么 folder[i] 就是 folder[j]子文件夹

文件夹的「路径」是由一个或多个按以下格式串联形成的字符串:'/' 后跟一个或者多个小写英文字母。

  • 例如,"/leetcode""/leetcode/problems" 都是有效的路径,而空字符串和 "/" 不是。

示例 1:

输入:folder = ["/a","/a/b","/c/d","/c/d/e","/c/f"]
输出:["/a","/c/d","/c/f"]
解释:"/a/b/""/a" 的子文件夹,而 "/c/d/e""/c/d" 的子文件夹。

示例 2:

输入:folder = ["/a","/a/b/c","/a/b/d"]
输出:["/a"]
解释:文件夹 "/a/b/c""/a/b/d/" 都会被删除,因为它们都是 "/a" 的子文件夹。

示例 3:

输入: folder = ["/a/b/c","/a/b/ca","/a/b/d"]
输出: ["/a/b/c","/a/b/ca","/a/b/d"]

提示:

  • 1 <= folder.length <= 4 * 10^4
  • 2 <= folder[i].length <= 100
  • folder[i] 只包含小写字母和 '/'
  • folder[i] 总是以字符 '/' 起始
  • 每个文件夹名都是 唯一

方法1:字典树

字典树中,每个结点存放一个字符。从根结点出发到某一节点,路径上所有的字符链接起来便能组成一个英文单词。该 “某一结点” 需要一个布尔值来表示:遍历到这个结点时是否能够组成一个 单词 ,或可以成为一次遍历的 终点 。若不能则继续往下遍历;若能组成单词,且当前结点还有孩子结点,则代表当前单词会作为其它单词的 前缀 出现:例如 “move” 是 “movement” 的前缀,“move” 中的结点 “e” 可以作为 一次遍历 的终点,也可以选择继续遍历,以 “movement” 中的结点 “t” 作为终点。

对于本题,也可以采用字典树的方式解决。将每一个 '/' 之间的 文件夹名 字符串作为每个结点 TrieNode 的值。例如 “/a/b/ca” 所构造出的字典树为 {a}->{b}->{ca} 。其中,结点 {ca} 处需要标示其为一个 终点

字典树结点

在结点 TrieNode 的定义中考虑怎么存放值时,可以使用 std::string_view 来避免字符串的重复构造。其只含有两个成员变量:字符串的起始位置和字符串长度。

字典树中 孩子结点 的存放需要 哈希表 来完成。以 结点的值哈希表的键 ,本题中即为 '/' 分割的文件夹名;以 TrieNode* 类型的指针作为 哈希表的值 。这样就建立了从 文件夹名该文件夹所对应的结点 的映射关系。最终类型为 std::unordered_map<std::string_view, TrieNode*>

最后是如何标示某个结点是否会是 一次遍历终点 。我们可以从题目的要求出发去考虑。题目要求删去所有 子文件夹 ,而 子文件夹 均存在一个 前缀 。这就意味着我们需要对字典树进行 深度遍历 。当从根结点出发按照 任一路径 遍历结点时,只要在当前路径上找到了一个 终点 ,那么就需要将该路径完整地记录下来。而该 完整路径 正好会是数组 folder 中的一个元素:

例如 folder 中仅有一个元素 “/a/b/ca” ,其所构造出的字典树为 {a}->{b}->{ca} 。遍历时,不会以 “b” 为终点,因为 folder 中没有元素 “a/b” ;遍历时,会以 “ca” 为终点,此时 folder 中存放了 完整的路径 “/a/b/ca”

于是可以用该 终点结点 所对应的 路径字符串folder 中的 索引 来标记该结点为终点结点,如上述中 “ca” 结点对应 “/a/b/ca”folder 中的索引为 0 ,因此 “ca” 结点中记录 0 。若不是终点结点,则该索引记为 -1 ,如上述中 “a” 结点和 “b” 结点的索引即为 -1 ,代表它们不会是一次遍历的终点。

TrieNode 的定义如下:

struct TrieNode
{
	int index;
	unordered_map<string_view, TrieNode*> children;

	explicit TrieNode(const int index = -1)
		: index{index} {}
};

以 ‘/’ 分割路径

本题所需要构造的字典树中,以每个 '/' 分割出来的 文件夹名 作为字典树结点的值。因此我们要对 folder[i] 进行分割。

由于所有路径均存放于 folder 中,在整个算法过程中均为左值,因此这里可以在数组 std::vector 中存放 std::string_view 来避免字符串的重复构造。

static vector<string_view> SplitPath(const string& path)
{
	vector<string_view> folderNames;
	for (int begin = 1; begin < path.length();)
	{
		if (const int end = path.find_first_of('/', begin);
			end != std::string::npos)
		{
			folderNames.emplace_back(path.data() + begin, end - begin);
			begin = end + 1;
		}
		else
		{
			folderNames.emplace_back(path.data() + begin, path.length() - begin);
			break;
		}
	}
	return folderNames;
}

构造字典树

定义函数 CreateTrie ,传入整个路径数组 folder 。循环遍历 folder ,对每个 folder[i] 构造结点。

剪枝优化:我们只需要 子文件夹 。假设 folder 中存有 “/a/b” 和 “/a/b/c” ,我们最终的答案中需要排除 “/a/b/c” 。在之后遍历寻找终点时,找到了 “/a/b” 便是答案,其之后的路径都不会访问,因此我们在构造字典树时甚至都不需要 构造 “/a/b/c”。

于是,我们首先构造出了 “{a}->{b}” 。之后处理 “/a/b/c” 时,首先从根节点出发到达 “a” 结点,再从 “a” 结点出发到达 “b” 结点。此时发现 “b” 结点存放的 索引 值为 0 ,是一个终点。因此本次处理 “/a/b/c” 的流程直接跳过即可。

若我们先处理了 “/a/b/c” 再处理 “/a/b” ,也就是说 folder 中存放它们的顺序不同,那么 “/a/b/c” 还是会被完整构造。

TrieNode* CreateTrie(const vector<string>& folder)
{
	TrieNode* head = new TrieNode{};
	for (int i = 0; i < folder.size(); ++i)
	{
		vector<string_view> folderNames = SplitPath(folder[i]);
		TrieNode* node = head;

		for (const string_view& folderName : folderNames)
		{
			if (auto it = node->children.find(folderName);
				it != node->children.end())
			{
				node = it->second;

				if (node->index != -1)
					break;
			}
			else
			{
				TrieNode* temp = new TrieNode{};
				node->children.emplace(folderName, temp);
				node = temp;
			}
		}

		if (node->index == -1)
			node->index = i;
	}
	return head;
}

完成算法

遍历字典树即可。这里采用了迭代的方式。使用递归方式也可。

vector<string> removeSubfolders(const vector<string>& folder)
{
	TrieNode* head = CreateTrie(folder);

	vector<string> ans;
	stack<const TrieNode*> stk;
	stk.emplace(head);

	while (!stk.empty())
	{
		const TrieNode* node = stk.top();
		stk.pop();

		if (node->index != -1)
		{
			ans.emplace_back(folder[node->index]);
		}
		else
		{
			for (const auto& [_, child] : node->children)
				stk.emplace(child);
		}
	}

	return ans;
}

代码总体

#include <vector>
#include <string>
#include <unordered_map>
#include <stack>
using namespace std;

class Solution
{
private:
	struct TrieNode;

public:
	vector<string> removeSubfolders(const vector<string>& folder)
	{
		TrieNode* head = CreateTrie(folder);

		vector<string> ans;
		stack<const TrieNode*> stk;
		stk.emplace(head);

		while (!stk.empty())
		{
			const TrieNode* node = stk.top();
			stk.pop();

			if (node->index != -1)
			{
				ans.emplace_back(folder[node->index]);
			}
			else
			{
				for (const auto& [_, child] : node->children)
					stk.emplace(child);
			}
		}

		return ans;
	}

	static vector<string_view> SplitPath(const string& path)
	{
		vector<string_view> folderNames;
		for (int begin = 1; begin < path.length();)
		{
			if (const int end = path.find_first_of('/', begin);
				end != std::string::npos)
			{
				folderNames.emplace_back(path.data() + begin, end - begin);
				begin = end + 1;
			}
			else
			{
				folderNames.emplace_back(path.data() + begin, path.length() - begin);
				break;
			}
		}
		return folderNames;
	}

	TrieNode* CreateTrie(const vector<string>& folder)
	{
		TrieNode* head = new TrieNode{};
		for (int i = 0; i < folder.size(); ++i)
		{
			vector<string_view> folderNames = SplitPath(folder[i]);
			TrieNode* node = head;

			for (const string_view& folderName : folderNames)
			{
				if (auto it = node->children.find(folderName);
					it != node->children.end())
				{
					node = it->second;

					if (node->index != -1)
						break;
				}
				else
				{
					TrieNode* temp = new TrieNode{};
					node->children.emplace(folderName, temp);
					node = temp;
				}
			}

			if (node->index == -1)
				node->index = i;
		}
		return head;
	}

private:
	struct TrieNode
	{
		int index;
		unordered_map<string_view, TrieNode*> children;

		explicit TrieNode(const int index = -1)
			: index{index} {}
	};
};

复杂度分析:

  • 时间复杂度: O ( n × L ‾ ) O(n \times \overline{L}) O(n×L)。其中, n n n 为数组 folder 的长度, L ‾ \overline{L} Lfolder 中文件夹名的平均长度。

  • 空间复杂度: O ( n × L ‾ ) O(n \times \overline{L}) O(n×L)。主要为字典树的开销。

参考结果

Accepted
32/32 cases passed (208 ms)
Your runtime beats 29.23 % of cpp submissions
Your memory usage beats 20.77 % of cpp submissions (89.8 MB)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问,比如最长公共序列、背包问、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的型,很多目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的目,按照难度从简单到困难排列。每个目都有详细的目描述、输入输出样例、目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠和最优结构性质的问。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问,如背包问、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的目涵盖了各种难度级别和场景的问。从简单的斐波那契数列、迷宫问到可以用于实际应用的背包问、最长公共序列等,难度不断递进且话丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问拆分成的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问,例如斐波那契数列、矩阵链乘法、背包问等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问。例如,经典的“爬楼梯”问,要求我们计算到n级楼梯的方案数。这个问的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问还有“零钱兑换”、“乘积最大数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问、保存中间状态来求解问。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问,但在某些场景下并不适用。例如,某些问的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解都非常重要。除了刷以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亡心灵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值