二叉树 基础



#include<stdio.h>
#include<string.h>
#include<malloc.h>
typedef struct Node
    {
        char data;
        struct Node * LChild;
        struct Node * RChild;
    }BiTNode, *BiTree;
/* 建立2叉树  */
void CreateBiTree(BiTree *bt)
{
    char ch;
    ch=getchar();
    if(ch=='.')
        *bt=NULL;
    else
    {
        *bt=(BiTree)malloc(sizeof(BiTNode));
        (*bt)->data = ch;
        CreateBiTree(&((*bt)->LChild));
        CreateBiTree(&((*bt)->RChild));
    }
}
void PreOrder(BiTree root)
{
    if(root != NULL)
    {
        printf("%c",root->data);
        PreOrder(root->LChild);
        PreOrder(root->RChild);
    }
}
void InOrder(BiTree root)
{
    if(root != NULL)
    {
        InOrder(root->LChild);
        printf("%c",root->data);
        InOrder(root->RChild);
    }
}
void PostOrder(BiTree root)
{
    if(root != NULL)
    {
        PostOrder(root->LChild);
        PostOrder(root->RChild);
        printf("%c",root->data);
    }
}
/*输出叶子结点*/
void  PreOrder2(BiTree root)
{
        if (root!=NULL)
        {
            if (root ->LChild==NULL && root ->RChild==NULL)
            printf ("%c",root -> data);
            PreOrder2(root -> LChild);
            PreOrder2(root -> RChild);
         }
}
/* 统计叶子节点数目  */


int Preleaf(BiTree root)
{
     int LeafCount;
     if(root==NULL)
        LeafCount =0;
      else if ((root->LChild==NULL)&&(root->RChild==NULL))
                   LeafCount =1;
else
            LeafCount =Preleaf(root->LChild)+Preleaf(root->RChild);
            return  LeafCount;
      }
/*输出2叉树高度*/
int PostTreeDepth(BiTree bt)
{
  int hl, hr, max;
  if(bt!=NULL)
  {
       hl=PostTreeDepth(bt->LChild);
       hr=PostTreeDepth(bt->RChild);
  max=hl>hr?hl:hr;
  return(max+1);
    }
  else return(0);
   }


int main(){
    BiTree a;
    CreateBiTree(&a);
    PreOrder(a);
    printf("%d",Preleaf(a));
    printf("%d",PostTreeDepth(a));
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
内容概要:PT500PLUS平行轴齿轮箱故障测试台是由瓦伦尼安(VALENIAN)Machine Vibration & Gearbox Simulator(机械振动-齿轮箱模拟器)开发的专业机械故障仿真测试设备。该测试台旨在模拟和研究转子、齿轮传动、轴承及电机系统中的多种常见故障,包括但不限于轴不对中、转子不平衡、机械松动、轴承故障、齿轮故障(如点蚀、磨损、断齿等)以及电机故障(如转子不平衡、轴承故障、匝间短路等)。测试台配备有先进的传感器和数据采集系统,能够实时采集并分析振动、噪声、转速、扭矩等参数,提供多通道同步信号采集与频谱分析功能。此外,测试台还配备了10寸触摸屏、PLC智能控制系统和急停按钮,确保操作简便和安全。 适用人群:机械工程专业师生、科研人员以及从事机械故障诊断和维护的技术人员。 使用场景及目标:①用于高校和科研机构的教学和研究,帮助学生和研究人员深入理解机械故障的机理;②为企业提供故障诊断和预防性维护的解决方案,提高设备可靠性和运行效率;③通过模拟真实工况下的故障,进行轴承寿命预测性试验,研究轴承故障机制与轴承载荷、转速、振动、温度之间的关系。 其他说明:测试台结构紧凑,模块化设计,便于移动和维护。它不仅支持多种传感器的安装和数据采集,还提供了丰富的分析软件功能,如FFT频谱分析、轴心轨迹图、小波分析等,支持数据导出和二次开发,适用于各种复杂的研究和应用需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值