树中的最长路径

题目

N个结点,用(N-1)个线段连接起来,组成一棵树。这棵树中距离最远的两个结点之间相隔的距离。注意:是任意两个结点的最远距离,不是树的深度。

解法

这个题目很像二叉树中,求距离最远的两个结点的距离。在求解时,递归求解任意两个结点的最大深度,假设左子树深度为L,右子树深度为R,那么经过这个结点的,且以这个结点为根节点的子树中,最远两个结点的距离为L+R。且其父节点的左子树(或右子树)的最大深度为max(L,R)。 
这样一来,后续遍历即可。一边就可以找到任意两个点间的最远距离。

题目中不同的是,不是二叉树,是多叉树。在存储多叉树时,一般用图的邻接表结构。在遍历时,随便以一个结点为根节点,后续遍历即可。因为是多叉树,在求其子树最大深度时,要用两个变量first和second,表示最大深度和次大深度。在以某个结点为根节点的子树中,最远两个结点的距离为first+second。

编码测试:

#include<iostream>
#include<vector>
#include<algorithm>
int maxDistance = 0;
std::vector<std::vector<int> > G(100001);//存储边信息
inline void AddEdge(int v, int s)//把结点v和s关联
{
    G[v].push_back(s);
    G[s].push_back(v);
}

int LastOrder(int pre, int cur)
{
    int first = 0, second = 0;//最大值和次大值
    for (size_t i = 0; i < G[cur].size(); ++i)
    {
        if (G[cur][i] == pre)//一直向下,不着重复的边
            continue;
        int temp = LastOrder(cur, G[cur][i]);//向下找
        if (temp>first)
        {
            second = first;
            first = temp;
        }
        else if (temp > second)
        {
            second = temp;
        }

    }    //注意:在以当前结点为根节点的子树中,最远两个结点的距离为first+second。
    maxDistance = std::max(maxDistance, first + second);
    return first + 1; //只返回当前子树的最大深度,父结点只需要知道子树的最大深度。
}

int main()
{
    int N;
    std::cin >> N;
    int Ai, Bi;
    for (int i = 1; i < N; ++i)
    {
        std::cin >> Ai >> Bi;
        AddEdge(Ai, Bi);
    }
    LastOrder(0, 1);
    std::cout << maxDistance;
    return 0;
}
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值