题目
N个结点,用(N-1)个线段连接起来,组成一棵树。这棵树中距离最远的两个结点之间相隔的距离。注意:是任意两个结点的最远距离,不是树的深度。
解法
这个题目很像二叉树中,求距离最远的两个结点的距离。在求解时,递归求解任意两个结点的最大深度,假设左子树深度为L,右子树深度为R,那么经过这个结点的,且以这个结点为根节点的子树中,最远两个结点的距离为L+R。且其父节点的左子树(或右子树)的最大深度为max(L,R)。
这样一来,后续遍历即可。一边就可以找到任意两个点间的最远距离。
题目中不同的是,不是二叉树,是多叉树。在存储多叉树时,一般用图的邻接表结构。在遍历时,随便以一个结点为根节点,后续遍历即可。因为是多叉树,在求其子树最大深度时,要用两个变量first和second,表示最大深度和次大深度。在以某个结点为根节点的子树中,最远两个结点的距离为first+second。
编码测试:
#include<iostream>
#include<vector>
#include<algorithm>
int maxDistance = 0;
std::vector<std::vector<int> > G(100001);
inline void AddEdge(int v, int s)
{
G[v].push_back(s);
G[s].push_back(v);
}
int LastOrder(int pre, int cur)
{
int first = 0, second = 0;
for (size_t i = 0; i < G[cur].size(); ++i)
{
if (G[cur][i] == pre)
continue;
int temp = LastOrder(cur, G[cur][i]);
if (temp>first)
{
second = first;
first = temp;
}
else if (temp > second)
{
second = temp;
}
}
//注意:在以当前结点为根节点的子树中,最远两个结点的距离为first+second。
maxDistance = std::max(maxDistance, first + second);
return first + 1; //只返回当前子树的最大深度,父结点只需要知道子树的最大深度。
}
int main()
{
int N;
std::cin >> N;
int Ai, Bi;
for (int i = 1; i < N; ++i)
{
std::cin >> Ai >> Bi;
AddEdge(Ai, Bi);
}
LastOrder(0, 1);
std::cout << maxDistance;
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48