关于动态规划的几个例子

本文介绍了动态规划在数塔问题和背包问题中的应用。数塔问题中,给出了状态转移方程m[i] = Max(a[i的左孩子] , a[i的右孩子]) + a[i]。背包问题中,动态规划的思想用于求解物品放入背包的最大价值,状态转移方程为f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。此外,还讨论了如何优化空间复杂度,并通过最长公共子序列问题进一步阐述动态规划的运用。" 120297256,10991149,模糊K均值聚类算法在语音识别中的应用,"['机器学习', '语音识别', '算法', '聚类']
摘要由CSDN通过智能技术生成
1. “数塔”问题

前几天做了好几个DP题目,感觉都是一个类型的,因此有必要总结一下。

 


数塔问题 :要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?

分析:站在位置9,我们可以选择沿12方向移动,也可以选择沿着15方向移动,现在我们假设“已经求的”沿12方向的最大值x和沿15方向的最大值y,那么站在9的最大值必然是:Max(x,y) + 9。

因此不难得出,对于任意节点i,其状态转移方程为:m[i] = Max(a[i的左孩子] , a[i的右孩子]) + a[i]

复制代码
 
     
#include <stdio.h>

#define N 10000
#define Max(a,b) ((a) > (b) ? (a) : (b))

int a[N];

int main( void)
{
int n , m , i , k , j;

scanf( " %d ",&m);
while(m-- > 0)
{
scanf( " %d ",&n);
k = ( 1 + n) * n / 2;
for(i = 1 ; i <= k; i++)
{
scanf( " %d ",a+i);
}

k = k - n;
for(i = k , j = 0 ; i >= 1 ; i--)
{
a[i] = a[i] + Max(a[i+n],a[i+n- 1]);
if(++j == n - 1)
{
n--;
j = 0;
}
}
printf( " %d\n ",a[ 1]);

}

return 0;
}


2. 0-1背包问题

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

 这个问题的特点是:每种物品只有一件,可以选择放或者不放。

算法基本思想:

利用动态规划思想 ,子问题为:f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

其状态转移方程是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}    //这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

解释一下上面的方程:“将前i件物品放入容量为v的背包中”这个子问题,如果只考虑第i件物品放或者不放,那么就可以转化为只涉及前i-1件物品的问题,即1、如果不放第i件物品,则问题转化为“前i-1件物品放入容量为v的背包中”;2、如果放第i件物品,则问题转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”(此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i])。则f[i][v]的值就是1、2中最大的那个值。

(注意:f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。)

优化空间复杂度:

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

上面f[i][v]使用二维数组存储的,可以优化为一维数组f[v],将主循环改为:

for i=1..N

for v=V..0

f[v]=max{f[v],f[v-c[i]]+w[i]};

即将第二层循环改为从V..0,逆序。

import java.util.Scanner;

public class Package0_1 {
    public static int[] cost = new int[1000];
    public static int[] weight = new int[1000];
    public static int[][] V = new int[1000][1000];

    public static void main(String[] args) {
        Scanner cin = new Scanner(System.in);
        while (cin.hasNext()) {
            int n = cin.nextInt();
            int v = cin.nextInt();
            for (int i = 1; i <= n; i++) {
                cost[i] = cin.nextInt();
                weight[i] = cin.nextInt();
            }
            for (int i = 1; i <= n; i++) {
                for (int j = v; j >= cost[i]; j--) {
                    V[i][j] = Math.max(V[i - 1][j], V[i - 1][j - cost[i]] + weight[i]);
                }
            }
            int i = n;
            int j = v;
            while (i > 0&&j!=0) {
                if (V[i][j] == V[i - 1][j - cost[i]] + weight[i]) {
                    System.out.print(i + " ");
                    j -= cost[i];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值