layoutinflaterde 使用

本文介绍如何使用LayoutInflater类加载XML布局文件。不同于findViewById方法用于查找具体控件,LayoutInflater用于加载整个布局。文中详细解释了获取LayoutInflater实例的方法及inflate方法的参数含义,并通过一个具体的示例展示了如何将一个按钮布局加载到空白布局中。
  layoutinflaterde这个类感觉类似与findViewById()这个方法,但它不是寻找XML布局中的具体控件,而是寻找layout下的XML布局。
在自定义View或者其他时候我们需要手动的加载布局文件,这时我们局需要用到layoutinflaterde
获得layoutinflaterde的三种方法:
 LayoutInflater inflater = getLayoutInflater();

 LayoutInflater inflater = LayoutInflater.from(context);  

 LayoutInflater inflater = (LayoutInflater)context.getSystemService (Context.LAYOUT_INFLATER_SERVICE);

当然最常用的就是LayoutInflater inflater = LayoutInflater.from(context);
得到实例后,就可以加载布局了:
inflater.inflate(resourceId, root, boolean);
这里的三个参数
resourceId:需要加载布局的ID;
root:指给该布局的外部再嵌套一层父布局,如果不需要就直接传null,一般情况下传你的父布局;
boolean:如果你的root传null,则这里就不再有用,当root传入父布局时,这里就要设为false,否者你会发现你父布局的view都不见了。
下面举个例子:
在这里我们建一个空白的布局

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    android:orientation="vertical" android:layout_width="match_parent"
    android:layout_height="match_parent">

</LinearLayout>

再定义一个按钮

<Button xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="wrap_content"  
    android:layout_height="wrap_content"  
    android:text="展示按钮" >  
</Button> 

将按钮加载到空白布局中

public class MainActivity extends Activity {  

    private LinearLayout myLayout;  

    @Override  
    protected void onCreate(Bundle savedInstanceState) {  
        super.onCreate(savedInstanceState);  
        setContentView(R.layout.activity_main);  
        myLayout= (LinearLayout) findViewById(R.id.main_layout);  
        LayoutInflater layoutInflater = LayoutInflater.from(this);  
        View buttonLayout = layoutInflater.inflate(R.layout.button_layout, null);  
        mainLayout.addView(buttonLayout);  
    }  

}  

OVER

内容概要:本文介绍了基于粒子群优化算法(PSO)的无人机路径规划与轨迹算法的实现,重点利用Matlab进行仿真与代码实现。文中详细阐述了如何应用PSO算法解决无人机在复杂环境中的路径规划问题,包括避开障碍基于粒子群优化算法的无人机路径规划与轨迹算法的实现(Matlab代码实现)物、寻找最优飞行路径以及实现平滑轨迹生成。该方法结合无人机运动学约束与环境建模,通过迭代优化粒子位置与速度,最终获得满足安全性、效率性和能耗最优的飞行路径。此外,文档还提到了多无人机协同路径规划的相关扩展研究,展示了算法在实际场景中的应用潜力。; 适合人群:具备一定Matlab编程基础,从事智能优化算法、无人机控制、路径规划等相关领域的研究生、科研人员及工程技术人员;熟悉基本优化算法和机器人运动规划的初学者亦可参考学习。; 使用场景及目标:① 掌握粒子群优化算法在无人机路径规划中的具体实现流程;② 学习如何在Matlab中构建二维/三维环境模型并进行轨迹仿真;③ 实现单无人机与多无人机系统的路径优化与避障功能;④ 为进一步研究智能算法在无人系统中的应用提供技术基础与代码参考。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,逐步调试并理解算法每一步的执行逻辑,同时可尝试修改参数或引入新的约束条件(如动态障碍物、风速干扰等),以加深对算法鲁棒性与适应性的理解。
一款面向基础设施即代码(IaC)的静态代码分析工具,同时也具备对镜像和开源软件包的软件成分分析(SCA)能力。它能够扫描多种主流基础设施编排工具定义的云环境配置,帮助开发运维团队在部署前识别安全漏洞与合规风险。该项目通过自动化检测有效降低云资源配置错误导致的安全事件概率。 【核心功能】 - 支持扫描Terraform、CloudFormation、Kubernetes等主流IaC文件的安全策略 - 集成500+内置策略规则,覆盖CIS基准等安全标准 - 提供软件成分分析(SCA)功能,检测依赖包漏洞 - 支持CI/CD流水线集成,实现自动化安全检测 【适用场景/人群】 - 云基础设施运维团队需要验证IaC配置安全性 - DevSecOps工程师寻求自动化安全扫描方案 - 开发团队需要在代码提交阶段发现资源配置错误 - 安全审计人员需要对云环境进行合规性检查 【快速上手】 1. 通过pip安装:pip install checkov 2. 执行基础扫描:checkov -d /path/to/iac-code 3. 查看检测报告,修复标记为FAILED的策略违规项 4. 可集成至CI流程使用docker镜像:bridgecrew/checkov 【版权与免责声明】 资源来自开源社区,仅供个人学习、研究和技术交流使用,请在使用时严格遵守原项目的开源许可协议。 下载后建议在24小时内完成学习与测试,并及时清理相关文件。 严禁将此资源用于任何商业目的或非法活动。任何因使用、修改或分发本资源而引起的法律纠纷或责任,均由使用者自行承担。 如本文档内容侵犯了您的合法权益,请联系开发者予以删除。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值