凸优化第三章凸函数 3.1基本性质和例子

3.1基本性质和例子

  1. 定义
  2. 扩展值延伸
  3. 一阶条件
  4. 二阶条件
  5. 例子
  6. 下水平集
  7. 上境图
  8. Jensen不等式及其扩展
  9. 不等式

定义

函数f是凸函数,当f的定义域S是凸集,且\forall x_1,x_2\in S,\forall \theta\in [0,1],f(\theta x_1+(1-\theta)x_2)\leq \theta f(x_1)+(1-\theta)f(x_2)

严格凸函数:\forall x_1,x_2\in S,\forall \theta\in (0,1),f(\theta x_1+(1-\theta)x_2) < \theta f(x_1)+(1-\theta)f(x_2)

从几何上来看,如下图,函数f上的任意两点之间的弦都在函数图像之上。

凸函数

函数f是凸函数,当且仅当在与函数f的定义域S相交的任何直线上,f均是凸的。

f:R^n\rightarrow R,g:R\rightarrow R,g(t)=f(x+tv),dom(g)=\left\{t|x+tv\in dom(f)\right\}),\forall x\in dom(f),v\in R^n

当且仅当g(t)是凸的,f(x)是凸的。

利用此性质,可以将函数限制在直线上判断其凹凸性。

扩展值延伸

扩展值延伸,其实就是对函数f的扩展,对那些不属于dom(f)的点y,定义f(y)=\infty

如果f是凸函数,定义其扩展值延伸\bar{f}:R^n \rightarrow R\cup \left\{ \infty \right\},如:

\bar{f}(x)=\left\{\begin{matrix} f(x) & x\in dom(f)\\ \infty & x\notin dom(f) \end{matrix}\right.

显然如果f(x)是凸函数,\bar{f}(x)也是凸函数。

一阶条件

判断函数f是凸函数的方法之一是看其是否满足一阶条件。

可微:如果函数f可微表示f的梯度在开集dom(f)处处存在。

一阶条件:如果f可微,则函数f是凸函数的充要条件是dom(f)是凸集且\forall x,y\in dom(f),下式成立:

f(y)\geqslant f(x)+\bigtriangledown f(x)^T(y-x)

一阶条件的证明:

(1)证明函数f是凸函数\Rightarrow一阶条件

函数f是凸函数,

  • 9
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值