凸优化第四章凸优化问题 4.2凸优化

本文深入探讨了凸优化问题,包括标准形式、局部与全局最优解的性质、可微函数的最优性准则,以及如何通过消除等式约束、引入松弛变量等方式转换问题。此外,还介绍了拟凸优化的概念,指出其局部最优解不一定是全局最优,并阐述了二分法求解拟凸优化问题的基本思想和算法流程。
摘要由CSDN通过智能技术生成

4.2凸优化

  1. 标准形式的凸优化问题
  2. 局部最优解与全局最优解
  3. 可微函数f_0的最优性准则
  4. 等价的凸问题
  5. 拟凸优化

标准形式的凸优化问题

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} f_i(x)\leq 0& i=1,\cdots m \\ a_i^T=b_i&i=1,\cdots p \end{matrix}

f_0,d_1,f_2\cdots ,f_m是凸函数,等式约束是仿射函数。则此优化问题是凸优化问题。

也可以写成

minimize\, \, f_0(x) \\ subject\, \, to\, \, \begin{matrix} f_i(x)\leq 0& i=1,\cdots m \\ Ax=b& \end{matrix}

重要性质:凸优化问题的可行集也是凸集。

证明:可行集是满足不等式约束和等式约束的点的集合,首先不等式约束函数f_i是凸函数,满足不等式约束f_i(x)\leq 0的x,相当于是f_i的0-下水平集,凸函数的下水平集是凸集,所以满足每个不等式约束的x均是凸集,同时满足这些不等式约束的x是这些凸集的交集仍为凸集。对于等式约束,满足每个仿射函数的x是凸集,同时满足多个仿射函数的x是凸集的交集也是凸集。同时考虑不等式约束和等式约束,可知凸优化问题的可行集也是凸集。

例子:

minimize\, \, f_0(x)=x_1^2+x_2^2 \\ subject\, \, to\, \, \begin{matrix} f_1(x)=x_1/(1+x_2^2)\leq 0& \\ h_1(x)=(x_1+x_2)^2=0& \end{matrix}

首先判断可行集,由两个约束函数可推出x_1+x_2=0,x_1\leq 0,可知可行集是凸集。

f_0是凸函数。但是这不是一个凸优化问题,因为其不等式约束函数不是凸函数,等式约束函数也不是仿射函数。

但可以得到其等价的凸优化问题:

minimize\, \, f_0(x)=x_1^2+x_2^2 \\ subject\, \, to\, \, \begin{matrix} f_1(x)=x_1\leq 0& \\ h_1(x)=x_1+x_2=0& \end{matrix}

局部最优解与全局最优解

凸优化问题的基础性质:局部最优解也是全局最优解。

证明:

假设x是局部最优解,且存在一个可行点y,f_0(y)\leq f_0(x)

因为x是局部最优解,故存在一些R,

R>0,f_0(x)=inf\left \{ f_0(z)|z\, is \, feasible,\begin{Vmatrix} z-x \end{Vmatrix}_2\leq R\right \}

因为凸优化问题的可行集是凸集,故取\forall \theta \in[0,1],z=\theta y+(1-\theta)x都属于可行集。

因为f_0(y)\leq f_0(x),故\begin{Vmatrix} y-x \end{Vmatrix}_2> R,此时令\theta =\frac{R}{2\begin{Vmatrix} y-x \end{Vmatrix}_2}。可知

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值