拉格朗日问题求解QP问题

function [x,lam,fval]=qlag(H,A,b,c)     % 拉格朗日法求解二次规划问题     % min f(x)=0.5*x'Hx+c'x, s.t. Ax=b     % input: H,c分别是目标函数的矩阵和向量,A%  ,b分别是约束条件中的矩阵和向量 ...

2017-06-08 15:57:24

阅读数 729

评论数 0

step into the door of machine learning(step 1)

机器学习算法主要处理的问题模型可以分为4类: 第一、分类问题:对于离散数据集,有一些已经标注好的数据,基于这些标注好的数据进行建模,随后基于该模型对于未标注的数据进行类别区分(此类中的样本集数目要多于测试集),例如google做的垃圾邮件分类的模型; 第二、回归问题:对于连续数据集,有一些已经...

2015-07-08 22:25:59

阅读数 292

评论数 0

Key points for biometrical character-based recognition technology

生物识别技术在近几年有了长足的进展,但要使生物识别从理论研究走向实际应用,众多的科研单位还需要突破和解决其中一系列的关键技术。从统计的意义上讲人类的指纹、掌形、虹膜等生理特征存在着唯一性。因而这些特征都可以作为鉴别用户身份的依据,近期基于静脉信息和人耳特征的识别技术的相关研究成果也逐步进入人们的视...

2015-07-05 22:48:34

阅读数 255

评论数 0

what is ELM

首先,ELM的核心就是将复杂的迭代过程转变为隐层参数随机产生。 其次,ELM 是一个神经网络,有输入层、隐藏层,输出层。 最后,ELM 的多分类效果优于SVM,而且速度贼快。 对于训练样本集{xi,ti}  i=1-N, 共有N各样本,其中每个样本xi 是一个d维列向量,ti是输...

2015-07-02 22:18:29

阅读数 329

评论数 0

CNN理解

卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网...

2015-06-26 23:31:12

阅读数 1149

评论数 0

深度学习及课题研究杂谈(一)

what is feature representation? no matter what learning and analytical architecture you adopt, the initial procedure refers to getting the basic fea...

2015-06-24 22:59:30

阅读数 1070

评论数 0

论文阅读之我见

发表了几篇论文,这个过程中必不可少的就是阅读他人经典论文,从中学习一二提高自己论文的逼格和录用率,简单说说自己的论文阅读习惯吧: 首先就是论文阅读周期:最开始给自己安排的是一周四篇(两篇自己研究课题的相关论文,两篇自己感兴趣的论文),不过现在对自己要求逐渐高了,大概是每天阅读大概两篇论文,随后利...

2015-06-19 22:12:00

阅读数 262

评论数 0

图像读取及基本处理程序片段

读入灰度图像序列程序实现cl; raw=zeros(200,256,30); for i=1:30 filename=strcat('F:\算法实验\data\seq3\',int2str(i),'.bmp'); raw(:,:,i)=imread(filename); end 方...

2015-06-17 22:21:47

阅读数 296

评论数 0

感知机模型理解和实现

感知机模型理解和实现 感知机模型: f(x)=w∙x+b 二分类超平面定义:w∙x+b=0 分类后有效分类判断标准: 所有的正样本点使得y_i>0 所有负样本使得y_i<0 如何学习得到分类超平面: 第一选择、统计误分类样本总数,设计方法使得该总数最小; 第二选择、统计...

2015-06-14 23:12:10

阅读数 637

评论数 0

图像纹理合成

关于纹理合成最经典的论文应该就数Efros的Texture Synthesis by Non-parametric Sampling这篇论文了,引用量近2000。 这里的合成是基于样例的,就是先有一个小的纹理图像,然后合成一个大的。 我个人的理解是,先产生一个大的随机图像,然后对随...

2015-06-09 23:12:02

阅读数 2223

评论数 0

The development and prosperous of deep learning theory applying in computer vision(Image part)

深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。 1. 深度学习发展历史的回顾 现有的深度学习模型属于神经网...

2015-06-08 22:53:00

阅读数 460

评论数 0

光流法的介绍

光流法即空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。 光流法的典型应用有目标检测和目标跟踪,具体介绍如下: 1、目标检测 光流法用于目...

2015-06-07 23:10:14

阅读数 787

评论数 0

图像配准基础理解

由对图像配准原理的讨论可知,多幅图像配准的目的是综合利用图像中的各种空间和灰度属性的信息,合并成一组在空间位置上和灰度属性上一一对准的图像,以便于对这组图像的后续处理。因此,图像配准一般由以下五个步骤构成: (1)       建立原始图像和待配准图像坐标系; (2)       确定图像配准...

2015-06-02 22:48:17

阅读数 1123

评论数 0

HOG特征理解

HOG(histogram of oriented gradient)表示的是图像局部方向梯度直方图,主要用来进行复杂图像中的行人检测,并且比较通用的模型是HOG+SVM。 基本思想:在图像中,局部区域的特征能够 被梯度或边缘的方向密度信息很好的表示(本质就是边缘的梯度信息) 思想思路:将待分...

2015-05-31 23:04:47

阅读数 365

评论数 0

深度学习初步理解

今天认真阅读了李航老师写的统计学习方法,对深度学习有了更加深入的认识,不过由于今天做其它事情刚结束,所以搞的比较晚,就先暂时不更新自己的理解了,转一篇别人的吧,供参考,其实还有一点就是我今天一直在想昨晚看的happynear博客里的一段话“博士一年级已经快读完了,但感觉还没找到搞科研的门路,现在读...

2015-05-30 23:46:01

阅读数 238

评论数 0

LBP算子理解

LBP(局部二进制模式)是一种用来描述灰度图像局部纹理特征的算子,具有明显的旋转不变性和灰度不变性的优点,具体计算过程为: 原始的LBP算子定义在3*3邻域内,随机选取图像的3*3局部区域,选取该区域的中心为算子阈值,将周围的8个像素点和该中心阈值进行比较,令大于该阈值的像素点表示为1,小于...

2015-05-30 00:11:12

阅读数 3836

评论数 0

图像特征基本介绍

特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义         至今为止特征没有万能和精确的定义。特征...

2015-05-30 00:10:25

阅读数 342

评论数 0

图像滤波基本理解

23:10,断网,心中万千。。。飘过,各种手段最后还是用手机发了,滤波即设定好算子后,对输入图像的中心像素的与算子大小相同的邻域进行相关运算或者卷积运算进而得到输出图像的过程。对应的算子不同,滤波方法和效果不同,具体算子和MATLAB中滤波规则主要分析如下: 基本滤波函数:output=...

2015-05-30 00:09:47

阅读数 448

评论数 0

图像分割值OTSU方法介绍

图像分割方法今天暂时不深入讨论了,因为本人目前对于图像二值化和分割认为是一样的,可是很多图像处理任务中会将图像先二值化后再分割,没搞懂~~因此暂时从二值化开始讨论,首先讨论的是OTSU(最大类间方差方法): 假设输入图像为灰度图像(0-255),那么在图像二值化的目的就是对图像进行基于设定阈...

2015-05-30 00:08:39

阅读数 1130

评论数 0

图像分割基本原理介绍

今天主要围绕图像分割进行基本的一些介绍讨论,深入分析和程序明天再讲: 基本原理:图像分割指的是根据图像的灰度,颜色,结构,纹理等特征设计合理的准则函数设计一个或多个阈值从而将图像中的像素点逐个与设定阈值比较进而将图像分割成若干个互不交叠的区域。 方法一,基于阈值分割方法 该方法实...

2015-05-30 00:08:04

阅读数 3491

评论数 0

提示
确定要删除当前文章?
取消 删除