概率计算

概率计算

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 1
描述
A和B两个人参加一场答题比赛。比赛的过程大概是A和B两个人轮流答题,A先答。一旦某人没有正确回答问题,则对手立即获胜。
所以,两个人比赛的时候在一定程度上靠的是运气,希望自己晚点碰到不会的题目,而对手早点碰到不会的题目。
为了简化问题,我们假设A答对问题的概率为a%, B答对问题的概率为b%,请问最后A、B获得比赛胜利的概率各为多少?
输入
先输入一个整数T,表示有T组测试数据。
接下来T行,每行输入两个整数a,b,表示A,B获胜的概率分别为a%和b%,其中0 <= a,b <= 100, ab < 10000。
输出
每组测试数据输出一行,分别为A和B最终获胜的概率,中间用1个空格隔开。概率请以最简分数x/y的形式表示(注意即使y为1,也要写成x/1的形式)。详细输出见样例。
样例输入
2
100 0
50 50
样例输出
1/1 0/1
1/3 2/3
 
   
假设A赢的概率是P
A在第一轮直接取胜的概率是
P1 = (a / 100) * (1 - b / 100)
第一轮AB两人都回答正确的概率是
P2 = (a / 100) * (b / 100) = a * b / 10000
此时第二轮将重新回到开始的时候的状态,所以概率上有以下的关系
P = P1 + P2 * P
即
P = P1 / ( 1 - P2)
 = (a / 100) * (1 - b / 100) / (1 - a * b / 10000 )
 = a * (100 - b) / (10000 - a * b)
A赢的概率是
a * (100 - b) / (10000 - a * b)
B赢的概率是
100 * (100 - a) / (10000 - a * b)
#include<stdio.h>
int gcd(int a,int b)//找最大公约数
{
    if(b==0)
    {
        return a;
    }
    else
    {
        return gcd(b,a%b);
    }
}
int main()
{
    int t,a,b;
    scanf("%d",&t);
    while(t--)
    {
         scanf("%d%d",&a,&b);
         int p,m,l;
         p=a*(100-b);
         m=(10000-a*b);
         l=gcd(p,m);
         p=p/l;
         m=m/l;
         int we,ni,s;
         we=100*(100-a);
         ni=(10000-a*b);
         s=gcd(we,ni);
         we=we/s;
         ni=ni/s;
         printf("%d/%d ",p,m);
         printf("%d/%d\n",we,ni);

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值