概率计算
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
1
-
描述
-
A和B两个人参加一场答题比赛。比赛的过程大概是A和B两个人轮流答题,A先答。一旦某人没有正确回答问题,则对手立即获胜。所以,两个人比赛的时候在一定程度上靠的是运气,希望自己晚点碰到不会的题目,而对手早点碰到不会的题目。为了简化问题,我们假设A答对问题的概率为a%, B答对问题的概率为b%,请问最后A、B获得比赛胜利的概率各为多少?
-
输入
-
先输入一个整数T,表示有T组测试数据。
接下来T行,每行输入两个整数a,b,表示A,B获胜的概率分别为a%和b%,其中0 <= a,b <= 100, ab < 10000。
输出
- 每组测试数据输出一行,分别为A和B最终获胜的概率,中间用1个空格隔开。概率请以最简分数x/y的形式表示(注意即使y为1,也要写成x/1的形式)。详细输出见样例。 样例输入
-
2 100 0 50 50
样例输出
-
1/1 0/1 1/3 2/3
-
-
假设A赢的概率是P A在第一轮直接取胜的概率是 P1 = (a / 100) * (1 - b / 100) 第一轮AB两人都回答正确的概率是 P2 = (a / 100) * (b / 100) = a * b / 10000 此时第二轮将重新回到开始的时候的状态,所以概率上有以下的关系 P = P1 + P2 * P 即 P = P1 / ( 1 - P2) = (a / 100) * (1 - b / 100) / (1 - a * b / 10000 ) = a * (100 - b) / (10000 - a * b)
-
先输入一个整数T,表示有T组测试数据。
A赢的概率是 a * (100 - b) / (10000 - a * b) B赢的概率是 100 * (100 - a) / (10000 - a * b)
-
#include<stdio.h> int gcd(int a,int b)//找最大公约数 { if(b==0) { return a; } else { return gcd(b,a%b); } } int main() { int t,a,b; scanf("%d",&t); while(t--) { scanf("%d%d",&a,&b); int p,m,l; p=a*(100-b); m=(10000-a*b); l=gcd(p,m); p=p/l; m=m/l; int we,ni,s; we=100*(100-a); ni=(10000-a*b); s=gcd(we,ni); we=we/s; ni=ni/s; printf("%d/%d ",p,m); printf("%d/%d\n",we,ni); } }