1.概念学习
马尔科夫模型常用于分析大量随机事件,随机事件的特点是一个离散事件发生之后,另一个离散事件将在前一个事件的条件下以一定的概率发生。以天气的马尔科夫模型为例:
在这个天气系统模型中,如果今天是晴天,那么明天有70%的可能是晴天,20%的可能是多云,10%的可能下雨。如果今天是下雨天,那么明天有50%的可能也下雨,25%的可能是晴天,25%的可能是多云。
需要注意以下几点:
- 任何一个节点引出的所有可能的总和必须等于100%。无论是多么复杂的系统,必然会在下一步发生若干事件中的一个事件;
- 虽然这个天气系统在任一时间都只有三种可能,但是你可以用这个模型生成一个天气状态的无限次转移列表;

本文介绍了马尔科夫模型的概念,它常用于分析随机事件。通过天气系统的例子,解释了模型如何工作,强调了每个节点的概率总和为100%,且当前状态直接影响后续状态。接着,文章进入实战部分,展示如何运用Python实现马尔科夫模型。
最低0.47元/天 解锁文章
711





