python自然语言处理-马尔科夫模型

本文介绍了马尔科夫模型的概念,它常用于分析随机事件。通过天气系统的例子,解释了模型如何工作,强调了每个节点的概率总和为100%,且当前状态直接影响后续状态。接着,文章进入实战部分,展示如何运用Python实现马尔科夫模型。

1.概念学习  

  马尔科夫模型常用于分析大量随机事件,随机事件的特点是一个离散事件发生之后,另一个离散事件将在前一个事件的条件下以一定的概率发生。以天气的马尔科夫模型为例:

在这个天气系统模型中,如果今天是晴天,那么明天有70%的可能是晴天,20%的可能是多云,10%的可能下雨。如果今天是下雨天,那么明天有50%的可能也下雨,25%的可能是晴天,25%的可能是多云。

需要注意以下几点:

  • 任何一个节点引出的所有可能的总和必须等于100%。无论是多么复杂的系统,必然会在下一步发生若干事件中的一个事件;
  • 虽然这个天气系统在任一时间都只有三种可能,但是你可以用这个模型生成一个天气状态的无限次转移列表;
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值