Note_ Federated Learning via Plurality Vote

Kai Yue , Graduate Student Member, IEEE, Richeng Jin Chau-Wai Wong , Member, IEEE, and Huaiyu Dai, Member, IEEE, , Fellow, IEEE
2022
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (SCI 1区/CCF B 期刊)

作者阅读本文目的:近期研究FL领域的量化方法,阅读本篇论文目标是熟悉文章中的量化过程;至于文章另一部分对拜占庭问题的研究以及理论分析证明,作者将于后期涉猎

一、动机和贡献

动机:
之前的算法没有同时考虑FL中的通信开销(communication overhead )、学习可靠性(learning reliability)以及部署效率的(deployment efficiency)的问题。
贡献:

  • 提出了一种名为 FedVote 的算法:在client端利用二元/三元量化梯度信息;并在sever端利用weighted vote进行聚合,从而解决拜占庭问题
  • 从理论分析和实证明了FedVote的有效性
  • 在cross-silo情景下,扩展FedVote为Byzantine-FedVote,在牺牲一部分算力的情况下对拜占庭问题具有更好的抵抗性

二、算法

算法流程

作者认为本文与之前量化文章不同之处为:**添加latent weight vector h \mathbf{h} h **

联邦学习的总目标为:

w ∗ = arg ⁡ min ⁡ w ∈ D n d 1 N ∑ j = 1 N l ( w ; ( x j , y j ) ) \mathbf{w}^*=\arg\min_{\mathbf{w}\in \mathbb{D}_n^d}\frac{1}{N}\sum_{j=1}^N l(\mathbf{w};(\mathbf{x}_j,\mathbf{y}_j)) w=argwDndminN1j=1Nl(w;(xj,yj))

本文通过优化 latent weight vector h ∈ R d \mathbf{h}\in\mathbb{R}^d hRd来解决上述问题。本质思路是:

  • client先进行正常的本地更新,得到更新后的梯度 h \mathbf{h} h ;然后对其进行归一化normalize操作,得到归一化梯度 w ~ \tilde{\mathbf{w}} w~;对归一化梯度进行量化,得到量化后梯度 w \mathbf{w} w;最后client将其上传给server端。
  • sever端进行vote操作,并将结果下发client。

单层流程示意图如下:
单层流程图

使用归一化函数是 tanh ⁡ ( ⋅ ) \tanh(\cdot) tanh()

算法总流程图为:
算法总流程图

三、实验

E. Normalization Funtion
对于归一化函数 φ ( x ) = tanh ⁡ ( a x ) \varphi(x)=\tanh(ax) φ(x)=tanh(ax),本文探索了 a ∈ { 0.5 , 1.5 , 2.5 , 10 } a\in\{0.5,1.5,2.5,10\} a{0.5,1.5,2.5,10},20轮实验后实验结果如下:
在这里插入图片描述

得出的结论为:随着 a a a 的增加,归一函数的线形域减少,导致收敛速度变慢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值