自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 代码随想录之字符串

*

2022-07-21 20:59:22 239 1

原创 代码随想录刷题记录:哈希表

秋招数据结构四刷集合

2022-07-20 20:22:37 317

原创 yolov5模型修改记录,实时更新(课题需要)

```python #判断标签是否检测存在if save_txt: import os tar_dir = str(save_dir / 'labels') # 指定目标文件夹 #if len(os.listdir(tar_dir)) == 0: # 目标文件夹内容为空的情况下 # print("不存在锚框,标签不存在") img22 = cv2.imread(str(save_dir / p.name)) #检测是否存在图片 if img.

2021-10-11 10:11:41 724

原创 anaconda pip安装包的路径

打开anaconda prompt输入d:cd D:\anaconda\envs\pytorch>pip install

2021-09-23 10:33:41 2364

原创 目标检测评价指标(查准率 precision,查全率recall,PR曲线,AP,MAP,交并比iou,置信度,NMS)

作者:阿凿链接:https://www.zhihu.com/question/53405779/answer/429585383来源:知乎查准率 precision,查全率recall,PR曲线,AP,MAP明确问题: 大背景是object detection, 我就以正在学的RetinaNet应用背景为例, 识别出来的每一个框都有N+1个score, 对应着N个class和1个background, 我们会选score最高的那个作为最终的判断基本定义: precision和recall的含义, p

2021-09-17 16:06:47 1525

原创 吴恩达机器学习课后题---kmeans聚类

题目:对已知数据集进行聚类。最后对图片的像素值进行聚类数据集:https://www.heywhale.com/mw/project/5da961c8c83fb400420f3dd7/datasetpython代码:#给定一个二维数据集,使用kmeans进行聚类import numpy as npimport scipy.io as ioimport matplotlib.pyplot as plt#第一步 引入数据,可视化data1 = io.loadmat('C:/Users/1510

2021-09-16 11:14:58 347

原创 吴恩达机器学习课后题----支持向量机svm

题目:在本练习中,您将使用支持向量机(SVMs)来构建垃圾邮件分类器。数据集:https://www.heywhale.com/mw/project/5da961c8c83fb400420f3dd7/dataset

2021-09-09 13:28:35 457

原创 吴恩达机器学习课后习题---week4反向传播神经网络

题目:使用神经网络算法识别数据集中的手写数字,数据集包含有:数字集与初始theta值。、数据集:https://www.heywhale.com/mw/project/5da6bd34c83fb40042068a41/dataset步骤:构建神经网络模型——初始化向量——向前传播算法——计算代价函数——反向传播,计算偏导数项——(梯度检验)——高级优化算法下降梯度得到预测值theta——对比预测数据得出准确率。python代码:import numpy as npimport matplo

2021-09-03 10:37:43 571

原创 吴恩达机器学习课后作业--week3前馈神经网络

题目:这部分,你需要实现一个可以识别手写数字的神经网络。神经网络可以表示一些非线性复杂的模型。权重已经预先训练好,你的目标是在现有权重基础上,实现前馈神经网络。若已给定神经网络中的theta矩阵(需要用反向传播算法得出),实现前馈神经网络,理解神经网络的作用。题目已给出a(1)为第一层输入层数据,有400个神经元代表每个数字的图像(不加偏置值);a(2)为隐藏层,有25个神经元(不加偏置值);a(3)为输出层‘,又10个神经元,以10个(0/1)值的向量表示;theta1为第一层到第二层的参数矩

2021-09-02 10:35:13 379

原创 吴恩达机器学习中文版课后题(中文题目+数据集+python版答案)week2 逻辑回归

题目一:你将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一所大学系的管理员,你想根据两次考试的成绩来决定每个申请人的录取机会。您有以前申请者的历史数据,可以用作逻辑回归的训练集。对于每个培训示例,您都有申请人在两次考试中的分数和录取决定。你的任务是建立一个分类模型,根据这两次考试的分数来估计申请人的录取概率。数据集:34.62365962451697,78.0246928153624,030.28671076822607,43.89499752400101,035.847408769

2021-08-31 15:46:43 2134

原创 吴恩达机器学习中文版课后题(中文题目+数据集+python版答案)week1 线性回归

一、单线性回归问题题目一:您将使用一元线性回归来预测食品车的利润。假设你是一家特许餐厅的首席执行官,正在考虑在不同的城市开设一家新的分店。该连锁店已经在不同的城市有卡车,你有这些城市的利润和人口数据。您希望使用这些数据来帮助您选择下一个要扩展到的城市。文件ex1data1.txt包含我们的线性回归问题的数据集。第一栏是一个城市的人口,第二栏是那个城市的餐车利润。利润的负值表示亏损。ex1.m脚本已经设置好为您加载这些数据。数据集ex1data1.txt:8.5781,126.4862,6.598

2021-08-26 15:53:02 2652

原创 机械专业研究生阶段 图像处理、目标检测学习路径规划(自用)

第一阶段:学习图像处理(5月-7月底)图像处理:采用C++语言**第一步--------学习冈萨雷斯《数字图像处理》---------学习图像处理的底层数学原理;第二部--------学习毛星云《opencv3编程入门》 + 朱伟《opencv编程实例》 --------学习opencv软件模块及API;**第二阶段:学习目标检测机器学习:采用python语言(8月-10月底)**第一步:观看吴恩达《机器学习》课程,完成课后习题---------了解机器学习基本知识;第二步:学习《西瓜书

2021-07-25 16:51:48 1498 1

原创 冈萨雷斯 数字图像处理 第十章 图像分割(点、线和边缘检测,边缘连接,全局阈值检测,Otsu最值阈值检测,区域生长图像分割)附代码

一、定义图像分割算法主要基于灰度值的两个基本性质:不连续性和相似性。第一种不连续性:是基于灰度突变为基础进行图像分割,比如图像的边缘;第二种相似性:是根据一组预定义的准则将一幅图像分割为相似的区域,比如 阈值处理、区域生长、区域分裂、区域聚合。10.2 间断检测(点、线和边缘检测)有如下结论:(1)一阶导数通常在图像中产生较粗的边缘;.(2)二阶导数对精细细节。如细线、孤立点和噪声有较强的相映;(3)二阶导数在灰度斜坡和灰度台阶过度处会产生双边缘响应;(4)二阶导数的符号可用于确定边缘的过

2021-07-07 15:32:43 5610

转载 c++语言opencv中遇到的内存问题,断言问题详情

opencv中Mat的断言问题OpenCV中经常会碰见CV_DbAssert,来谈一谈opencv中Mat类的CV_DbAssertOpenCV中经常会碰见CV_DbAssert,来谈一谈opencv中Mat类的CV_DbAssert_Tp& Mat::at(int i0, int i1){//1.如果维度越界CV_DbgAssert(dims <= 2);//2.如果数据为空CV_DbgAssert(data);//3.如果i0越界CV_DbgAssert((unsi

2021-06-24 15:08:03 3094

原创 数字图像处理第九章形态学图像处理(膨胀、腐蚀、开操作、闭操作、击中或击不中、边界提取、连通分量提取)

9.1预备知识数学形态学的语言是集合;数学形态学中的集合表示图像中的不同对象;例如在二值图像中,所有黑色像素的集合是图像完整的形态学描述;在二值图像中,正在被讨论的集合是二维整数空间z^2的元素,在这个整数二维空间中,集合的每个元素都是一个多元组,是一个黑色(或白色。取决于事先约定)像素在图像中的坐标(x,y)。一般默认,二值图像中,白色为背景图,黑色为描述图像的元素。假设存在集合A 和集合B:集合A的补集合=是不包含集合A元素的所有元素组成A^c.集合A和B的差表示为 A - B = A

2021-06-23 17:30:56 4059

原创 数字图像处理第六章彩色图像处理(颜色模型,伪彩色图像处理,全彩色图像处理,彩色图像分割、彩色图像边缘检测,后续补充)

本章节主要内容包括彩色模型分类、伪彩色图像处理、全彩色图像处理、彩色变换、彩色图像的基本变换、彩色图像的平滑和锐化、基于彩色图像的分割、噪声、压缩。6.1彩色模型颜色模型又叫颜色空间或者颜色系统,其目的是在某些标准下用通常可以接受的方式方便地对彩色加以说明。本质上彩色模型是坐标系统和子空间的说明,其中,位于系统中的每个颜色都由单个点来表示。主要由 RGB\HSI\CMY\CMYK四种颜色空间。6.1.1RGB颜色模型该种模型基于笛卡尔坐标,坐标轴为红绿蓝三基色;该模型的彩色子空间是一个立方体,

2021-06-08 17:03:15 4849 4

原创 冈萨雷斯数字图像处理第五章图像复原(椒盐、高斯、周期噪声、均值、中值、自适应、陷波滤波器、逆滤波、维纳滤波)

本章主要分为两大内容:第一,针对只存在噪声影响下的图像复原;第二,针对存在退化函数和噪声的两种作用下的图像复原;5.1图像复原的概念以及模型1、概念与图像增强类似,图像复原的目的也是改善给定的图像,但是图像增强是一个主观的过程,而图像复原是一个客观的过程。 复原技术是面向退化模型的,并且采用相反的过程进行处理,以便恢复出原图像 。2、图像退化/复原模型1、 退化复原模型如下:2、上述模型在空间域中表示为:五角星表示为空间域中卷积,空间域中在卷积=频率域中在乘积,故在频率域中在

2021-06-01 16:50:20 2876

转载 关于空间域卷积和频率域卷积

前段时间看了很多的概念和知识,发现因为是走马观花的过了一遍,所以看得稀里糊涂的,然后许多地方混淆了概念,特别是关于图像频率域的部分的理解(包括图像频率域滤波之类的),所以下面总结一下这段时间重新看《数字图像处理》(电子工业出版社,Matlab本科教学版)第三章重新收获的关于频率域的理解。首先,我们要明确的概念是空间域和频率域,我们通过imread函数得到的一幅图像(基本上也是我们平时说的图像),是处在空间域的,也就是说用f(x,y)表征的某一点的灰度值(或者是单色图像中某一点的亮度)的这种形式,就是在空间

2021-05-31 11:57:12 5639

原创 数字图像处理第四章频率域滤波(低通滤波器、高通滤波器、拉普拉斯滤波、同态滤波器)

本章节的主要内容具体包括:傅里叶变换的概念及处理的相关知识、频率域卷积概念、三种低通滤波器的原理及代码实现、三种高通滤波器的原理及代码实现、频率域拉普拉斯算法原理及实现、同态滤波器原理及代码实现。4.1傅里叶变换原理1、傅里叶变换概念:法国数学家傅里叶指出:任何周期函数都可以表示为不同频率的正弦和或余弦和的形式,每个正弦和或者余弦和乘以不同的系数(这个正弦和或余弦和就是傅里叶级数)。非周期函数也可以用正弦或者余弦乘以加权函数的积分来表示。这种情况下就是傅里叶变换。。DFT指的是单变量的离散傅里叶变

2021-05-23 19:00:57 15488

原创 数字图像处理第三章边缘检测(Sobel算子、Laplace算子)

边缘边缘(edge)是指图像局部强度变化最显著的部分。主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。图像强度的显著变化可分为:阶跃变化函数,即图像强度在不连续处的两边的像素灰度值有着显著的差异;线条(屋顶)变化函数,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值。图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈.边缘上的这种变化可以用微分算子检测出来,通常用一阶或二阶导

2021-05-21 15:21:47 7860

原创 冈萨雷斯数字图像处理第三章空间滤波

3.5.1均值滤波1.数学原理概念:“把每个像素都用周围的8个像素来做均值操作 ”作用:平滑图像的用处, 有的图像的锐度很高,用这样的均值算法,可以把锐度降低。使得图像看上去更加自然两种3x3的平滑滤波器(线性滤波):3x3平均滤波器R=1/9 ∑Zi------滤波器模板系数都为1; 3x3加权滤波器R=1/16∑Zi,滤波器模板系数不同,中心点影响最大。均值滤波就是将滤波器模板和图像像素进行卷积。需要注意的是滤波模板(卷积核)必须为奇数2.实现代码第一;opencv自带的均值滤波函数为

2021-05-21 15:21:07 438

原创 数字图像处理第三章直方图处理(计算绘制,均衡化,规定化,局部均衡化,直方图统计)

3.3直方图处理1.什么是直方图(histogram)在统计学中,直方图(Histogram)是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量。一般来说用横轴表示数据类型,纵轴表示分布情况。直方图是数值数据分布的精确图形表示。 这是一个连续变量(定量变量)的概率分布的估计,并且被卡尔·皮尔逊(Karl Pearson)首先引入。它是一种条形图。 为了构建直方图,第一步是将值的范围分段,即将整个值的范围分成一系列间隔,然后计算每个间隔中有多少值。

2021-05-21 15:20:43 3657

原创 冈萨雷斯数字图像处理第三章灰度变换与空间滤波算法 c++

3.2一些基本的灰度变换函数具体有 1、图像反转函数 2、对数变换函数 3、幂次(伽马)变换函数 4、分段线性变换函数(对比拉伸、灰度切割、位图切割)3.2.1图像反转函数1.数学原理灰度级范围【0,L-1】的图像反转: S= L-1 -r r为输入,s为输出。适用于增强嵌入图像暗色区域的白色或灰色细节,特别是黑色面积占据主导地位时。图像反转就是黑白颠倒,若像素px= 0,则反转后px=255。公式:反转后的像素a= 255- a2.实现过程输入水平翻转:[1,1,0] ----

2021-04-30 15:14:51 806

原创 Python Opencv数字图像处理{车牌识别}

实现步骤

2021-04-30 15:13:44 892

转载 (四)OpenCV-Python学习—形态学处理

通过阈值化分割可以得到二值图,但往往会出现图像中物体形态不完整,变的残缺,可以通过形态学处理,使其变得丰满,或者去除掉多余的像素。常用的形态学处理算法包括:腐蚀,膨胀,开运算,闭运算,形态学梯度,顶帽运算和底帽运算。1. 腐蚀-----像素最小值代替锚点位置,白变小黑边大腐蚀操作类似于中值平滑,也有一个核,但不进行卷积运算,而是取核中像素值的最小值代替锚点位置的像素值,这样就会使图像中较暗的区域面积增大,较亮的的区域面积减小。如果是一张黑底,白色前景的二值图,就会使白色的前景物体颜色变小,就像被腐蚀.

2021-03-31 16:09:08 406

转载 (三)OpenCV-Python学习—图像平滑

由于种种原因,图像中难免会存在噪声,需要对其去除。噪声可以理解为灰度值的随机变化,即拍照过程中引入的一些不想要的像素点。噪声可分为椒盐噪声,高斯噪声,加性噪声和乘性噪声等,参见:https://zhuanlan.zhihu.com/p/52889476噪声主要通过平滑进行抑制和去除,包括基于二维离散卷积的高斯平滑,均值平滑,基于统计学的中值平滑,以及能够保持图像边缘的双边滤波,导向滤波算法等。下面介绍其具体使用二维离散卷积理解卷积:https://www.zhihu.com/question/22

2021-03-31 11:09:15 597

转载 (二)OpenCV-Python学习—对比度增强

·对于部分图像,会出现整体较暗或较亮的情况,这是由于图片的灰度值范围较小,即对比度低。实际应用中,通过绘制图片的灰度直方图,可以很明显的判断图片的灰度值分布,区分其对比度高低。对于对比度较低的图片,可以通过一定的算法来增强其对比度。常用的方法有线性变换,伽马变换,直方图均衡化,局部自适应直方图均衡化等。1. 灰度直方图及绘制灰度直方图用来描述每个像素在图像矩阵中出现的次数或概率。其横坐标一般为0-255个像素值,纵坐标为该像素值对应的像素点个数。如下图所示的图像矩阵(单通道灰度图,三通道时可以分别..

2021-03-30 15:29:57 2248

转载 (一)OpenCV-Python学习—基础知识

opencv是一个强大的图像处理和计算机视觉库,实现了很多实用算法,值得学习和深究下。1.opencv包安装·  这里直接安装opencv-python包(非官方): pip install opencv-python官方文档:https://opencv-python-tutroals.readthedocs.io/en/latest/2. opencv简单图像处理2.1 图像像素存储形式首先得了解下图像在计算机中存储形式:(为了方便画图,每列像素值都写一样了)对于只有黑白颜色的

2021-03-29 15:41:25 542

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除