请你将一些箱子装在 一辆卡车 上。给你一个二维数组 boxTypes
,其中 boxTypes[i] = [numberOfBoxesi, numberOfUnitsPerBoxi]
:
numberOfBoxesi
是类型i
的箱子的数量。numberOfUnitsPerBoxi
是类型i
每个箱子可以装载的单元数量。
整数 truckSize
表示卡车上可以装载 箱子 的 最大数量 。只要箱子数量不超过 truckSize
,你就可以选择任意箱子装到卡车上。
返回卡车可以装载 单元 的 最大 总数。
示例 1:
输入:boxTypes = [[1,3],[2,2],[3,1]], truckSize = 4
输出:8
解释:箱子的情况如下:
- 1 个第一类的箱子,里面含 3 个单元。
- 2 个第二类的箱子,每个里面含 2 个单元。
- 3 个第三类的箱子,每个里面含 1 个单元。
可以选择第一类和第二类的所有箱子,以及第三类的一个箱子。
单元总数 = (1 * 3) + (2 * 2) + (1 * 1) = 8
示例 2:
输入:boxTypes = [[5,10],[2,5],[4,7],[3,9]], truckSize = 10
输出:91
提示:
1 <= boxTypes.length <= 1000
1 <= numberOfBoxesi, numberOfUnitsPerBoxi <= 1000
1 <= truckSize <= 106
算法思想:
首先我们得先对二维数组按行按某个元素进行排序,我们先看下面这个例子:
假设有一个学生列表存储了学号,姓名,年龄信息:
students = [[3,'Jack',12],[2,'Rose',13],[1,'Tom',10],[5,'Sam',12],[4,'Joy',8]]
按学号顺序排序:
sorted(students,key=(lambda x:x[0]))
[[1, 'Tom', 10], [2, 'Rose', 13], [3, 'Jack', 12], [4, 'Joy', 8], [5, 'Sam', 12]]
接着再来看我们这题,我们可以对二维数组按每行的第二个元素进行排序,优先加上存储量大的箱子(在不超过最大箱子数量的truckSize情况下
),这样我们就可以得到如下代码:
class Solution:
def maximumUnits(self, boxTypes: List[List[int]], truckSize: int) -> int:
sum = 0
list = sorted(boxTypes, key=(lambda x:x[1]),reverse=True)#按第2个元素降序排列
for i in range(len(list)):
sum += list[i][0] * list[i][1]#list[i][0]为元素个数,list[i][1]为元素值
truckSize -= list[i][0]
if(truckSize < 0):
sum -= list[i][0] * list[i][1]
truckSize += list[i][0]
sum += truckSize * list[i][1]
break
return sum