最短路径算法整理

                                       转载请注明出处:http://blog.csdn.net/wangjian8006

dijkstra算法:
首先他的思想是按路径长度递增次序产生最短路径算法,将d[i]看成从1到i的最短路径,那么如果v是i的邻边的话有d[i]=min(d[i],d[v]+map[v][i]),并且这个算法只能求单源非负权值最短路径

 

void dijstra(){
	int i,j,ans=-1,min,v;
	int d[MAXV],vis[MAXV];
	//d数组表示从原点到i点的最短距离
	//vis用于表达这个点是否已经被选中
	for(i=1;i<=n;i++){
		d[i]=INF;
		vis[i]=0;
	}
	d[start]=0;		//因为start到start的距离为0

	for(i=1;i<=n;i++){
		min=INF;
		for(j=1;j<=n;j++){		//每次找点的过程,首先这个点没有被发现,然后找一个最小点
			if(!vis[j] && d[j]<min){
				min=d[j];
				v=j;
			}
		}
		//这里为什么找的最小的边就一定是最短路呢
		//因为一个图要连通起来,就必须有一条边和已知点集连起来,所以找的最小的未知点必是最短路
		vis[v]=1;

		for(j=1;j<=n;j++)		//加进最小点后,再修改从源点没有被发现的点的最短路径
			if(!vis[j] && d[v]+map[v][j]<d[j])
				d[j]=d[v]+map[v][j];
	}
}

 

bellman_ford算法:
求含负权图的单源最短路径算法,效率很低,但代码很容易写。即进行不停地松弛(原文是这么写的,为什么要叫松弛,争议很大),每次松弛把每条边都更新一下,若n-1次松弛后还能更新,则说明图中有负环,无法得出结果,否则就成功完成。

 

struct {  
	int s,e,w;  
}t[MAXE]; 

void bellman_ford(){
	int i,j,ans=-1,start=1;
	int d[MAXV];
	for(i=1;i<=n;i++) d[i]=INF;

	d[start]=0;

	for (i=1;i<n;i++){		//重复进行n-1次收缩
		for (j=0;j<m;j++){		//对每条边进行收缩
			if (d[t[j].s]+t[j].w<d[t[j].e])  d[t[j].e]=d[t[j].s]+t[j].w;
			//分别对每条边的两个顶点分别进行收缩
			if (d[t[j].e]+t[j].w<d[t[j].s])  d[t[j].s]=d[t[j].e]+t[j].w;
		 }
	}
}

/*bellman_ford加个flag优化:*/
void bellman_ford(){
	int i,j,ans=-1,start=1;
	int d[MAXV];
	for(i=1;i<=n;i++) d[i]=INF;

	d[start]=0;

	int flag=1;
	while(flag){

		flag=0;		//松弛到没有再更新的就退出
		for (j=0;j<m;j++){		//对每条边进行收缩
			if (d[t[j].s]+t[j].w<d[t[j].e])  {d[t[j].e]=d[t[j].s]+t[j].w;flag=1;}
			//分别对每条边的两个顶点分别进行收缩
			if (d[t[j].e]+t[j].w<d[t[j].s])  {d[t[j].s]=d[t[j].e]+t[j].w;flag=1;}
		 }
	}
}


 

spfa算法:spfa实际上是bellman_ford算法的优化,是一个国产算法求最短路径的,同样适合含负权图

SPFA算法有两个优化算法 SLF 和 LLL:
SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)<dist(i),则将j插入队首,否则插入队尾。
 LLL:Large Label Last 策略,设队首元素为i,队列中所有dist值的平均值为x,若dist(i)>x则将i插入到队尾,查找下一元素,直到找到某一i使得dist(i)<=x,则将i出对进行松弛操作。
SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。

 

/*spfa邻接表*/
struct {
	int s,e,w,next;
}t[MAXE];

int n,m,headlist[MAXV];

void main(){
	for(i=1;i<=n;i++) headlist[i]=-1;
	for(i=2;i<=n;i++)
		for(j=1;j<i;j++){
			scanf("%d",s);
			//无向图的spfa的边要存两遍
			t[m].w=s;
			t[m].s=i;
			t[m].e=j;
			t[m].next=headlist[j];
			headlist[j]=m++;
			t[m].w=s;
			t[m].s=j;
			t[m].e=i;
			t[m].next=headlist[i];
			headlist[i]=m++;
		}
}

void spfa(){
	int i,ans=-1,start=1,v,b;
	int d[MAXV],vis[MAXV];
	queue <int>q;
	for(i=1;i<=n;i++){
		d[i]=INF;
		vis[i]=0;
	}
	
	d[start]=0;
	vis[start]=1;
	q.push(start);

	while(!q.empty()){
		v=q.front();
		q.pop();
		vis[v]=0;
		for(i=headlist[v];i!=-1;i=t[i].next){
			b=t[i].s;
			if(d[v]+t[i].w<d[b]){
				d[b]=d[v] + t[i].w;
				if(!vis[b]){
					vis[b]=1;
					q.push(b);
				}
			}
		}
	}
}

/*spfa邻接矩阵:*/
void spfa(){
	int i,j,ans=-1,v,start=1;
	int d[MAXV],vis[MAXV];
	queue <int>q;

	for(i=1;i<=n;i++){
		d[i]=INF;
		vis[i]=0;
	}

	q.push(start);
	d[start]=0;
	vis[start]=1;

	while(!q.empty()){
		v=q.front();
		q.pop();

		vis[v]=0;

		for(i=1;i<=n;i++){
			if(d[i]>d[v]+map[v][i]){
				d[i]=d[v]+map[v][i];
				if(!vis[i]){
					q.push(i);
					vis[i]=1;
				}
			}
		}
	}
}


 

floyd算法:
Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法

采用的是(松弛技术),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);   
其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}

 

void floyd(){
	int i,j,k;
	for(k=1;k<=n;k++)
		for(i=1;i<=n;i++)
			for(j=1;j<=n;j++)
				if(map[i][k]+map[k][j]<map[i][j])
					map[i][j]=map[i][k]+map[k][j];
}


 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值