第13周项目3-Dijkstra算法的验证

 Copyright (c)2016,烟台大学计算机与控制工程学院 
* All rights reserved. 
* 文件名称:项目3.cbp 
* 作    者:王婧
* 完成日期:2016年11月24日 
* 版 本 号:v1.0 
 
* 问题描述:Dijkstra算法的验证。 
 
* 输入描述:无 
* 程序输出:测试数据 

头文件及功能函数详见【图算法库】

代码:

#include "graph.h"  
#define MaxSize 100  
  
  
void Ppath(int path[],int i,int v)  //前向递归查找路径上的顶点  
{  
    int k;  
    k=path[i];  
    if (k==v)  return;          //找到了起点则返回  
    Ppath(path,k,v);            //找顶点k的前一个顶点  
    printf("%d,",k);            //输出顶点k  
}  
void Dispath(int dist[],int path[],int s[],int n,int v)  
{  
    int i;  
    for (i=0; i<n; i++)  
        if (s[i]==1)  
        {  
            printf("  从%d到%d的最短路径长度为:%d\t路径为:",v,i,dist[i]);  
            printf("%d,",v);    //输出路径上的起点  
            Ppath(path,i,v);    //输出路径上的中间点  
            printf("%d\n",i);   //输出路径上的终点  
        }  
        else  printf("从%d到%d不存在路径\n",v,i);  
}  
void Dijkstra(MGraph g,int v)  
{  
    int dist[MAXV],path[MAXV];  
    int s[MAXV];  
    int mindis,i,j,u;  
    for (i=0; i<g.n; i++)  
    {  
        dist[i]=g.edges[v][i];      //距离初始化  
        s[i]=0;                     //s[]置空  
        if (g.edges[v][i]<INF)      //路径初始化  
            path[i]=v;  
        else  
            path[i]=-1;  
    }  
    s[v]=1;  
    path[v]=0;              //源点编号v放入s中  
    for (i=0; i<g.n; i++)               //循环直到所有顶点的最短路径都求出  
    {  
        mindis=INF;                 //mindis置最小长度初值  
        for (j=0; j<g.n; j++)       //选取不在s中且具有最小距离的顶点u  
            if (s[j]==0 && dist[j]<mindis)  
            {  
                u=j;  
                mindis=dist[j];  
            }  
        s[u]=1;                     //顶点u加入s中  
        for (j=0; j<g.n; j++)       //修改不在s中的顶点的距离  
            if (s[j]==0)  
                if (g.edges[u][j]<INF && dist[u]+g.edges[u][j]<dist[j])  
                {  
                    dist[j]=dist[u]+g.edges[u][j];  
                    path[j]=u;  
                }  
    }  
    Dispath(dist,path,s,g.n,v);     //输出最短路径  
}  
  
  
int main()  
{  
    MGraph g;  
    int A[6][6]=  
    {  
        {0,50,10,INF,45,INF},  
        {50,0,15,INF,5,INF},  
        {20,INF,0,15,INF,INF},  
        {INF,20,INF,0,35,INF},  
        {INF,INF,INF,30,0,INF},  
        {INF,INF,INF,3,INF,0},  
    };  
    ArrayToMat(A[0], 6, g);  
    Dijkstra(g,0);  
    return 0;  
}  

测试用图:

这里写图片描述

运行结果:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值