集合的概念和基本运算
集合是指由一些确定的对象汇集的全体,其中每个对象叫做集合的元素。
数集 | 自然数集 | 正整数集 | 整数集 | 有理数集 | 实数集 |
---|---|---|---|---|---|
符号 | N | N*或N+ | Z | Q | R |
-
元素与集合的关系
一般地,集合用大写字母表示,元素用小写字母表示。
若元素𝑎在集合 A 中,就说𝑎属于 A,记为𝑎∈ A;否则就说𝑎不属于 A,记为𝑎 ∉ A。
包含有限个元素的集合叫做有限集
包含无限个元素的集合叫做无限集
不包含任何元素的集合叫做空集,记为∅。 -
集合中元素的三个特性
确定性、互异性、无序性 -
集合与集合的关系
若集合 A 中的每一个元素都是集合 B 中的元素,则说 A 包含于 B 或 B 包含 A,也说 A 是 B 的子 集,记作 A ⊆ B A \subseteq B A⊆B 或者 B ⊇ A B \supseteq A B⊇A。
若集合 A 中的每一个元素都是集合 B 中的元素,且存在元素 a ∈ B a \in B a∈B 但 a ∉ A a \not\in A a∈A,A是B的真子集,记作 A ⫋ B A \subsetneqq B A⫋B 或者 B ⫌ A B \supsetneqq A B⫌A。
若 A ⊆ B A \subseteq B A⊆B ,且 B ⊇ A B \supseteq A B⊇A,就称集合 A 与 B 相等,记作 A = B A=B A=B。 -
集合的表示方法:列举法、描述法
(1)列举法:适用有限集
例如: A = { 0 , 1 , 2 } A=\{0,1,2\} A={ 0,1,2}
(2)描述法:适用无限集和有限集
例如: A = { ( x , y ) ∣ 2 x + y = 1 } A=\{(x, y)|2x + y = 1\} A={ (x,y)∣2x+y=1} B = { x ∣ x < 6 , x ∈ N } B= \{x|x < 6, x \in N \} B={ x∣x<6,x∈N}
闭区间: [ a , b ] = { x ∣ a ≤ x ≤ b , x ∈ R } [a, b]=\{x|a ≤ x ≤ b,x \in R\} [a,b]={ x∣a≤x≤b,x∈R}
开区间: ( a , b ) = { x ∣ a < x < b , x ∈ R } (a, b)=\{x|a < x < b, x \in R\} (a,b)={ x∣a<x<b,x∈R}
半开半闭区间: [ a , b ) = { x ∣ a ≤ x < b , x ∈ R } [ a , + ∞ ) = { x ∣ x ≥ a , x ∈ R } [a, b)=\{x|a ≤ x < b, x \in R\} [a, +∞)=\{x|x ≥ a, x \in R\} [a,b)={ x∣a≤x<b,x∈R}[a,+∞)={ x∣x≥a,x∈R} -
集合之间的运算
A,B 为两个已知集合
交集: { x ∣ x ∈ A 且 x ∈ B } \{x|x \in A 且 x \in B\} { x∣x∈A且x∈B}称为 A 和 B 的交集,记为 A ∩ B A \cap B A∩B.
并集: { x ∣ x ∈ A 或 x ∈ B } \{x|x \in A 或 x \in B\} { x∣x∈A或x∈B}称为 A 和 B 的并集,记为 A ∪ B A \cup B A∪B.
余集(差集): { x ∣ x ∈ A 但 x ∉ B } \{x|x \in A 但x \not\in B\} { x∣x∈A但x∈B}称为 B 在 A 中的余集(差集),记为 A − B A-B A−B
补集:全集U,若 A ⊆ U A \subseteq U A⊆U,由全集U中不属于集合A的元素组成的集合成为集合A相对于全集U的补集,记作 C U A = { x ∣ x ∈ U 且 x ∉ A } C_UA = \{x|x \in U 且 x \not\in A\} CUA={ x∣x∈U且x∈A} -
集合的性质
任何一个集合都是本身的子集,即 A ⊆ A A \subseteq A A⊆A
对于集合A,B,C,若 A ⊆ B A \subseteq B A⊆B ,且 B ⊆ C B \subseteq C B⊆C ,则有 A ⊆ C A \subseteq C A⊆C
空集是任何集合的子集,是任何非空集合的真子集
若一个集合中含有n个元素,则其子集个数为 2 n 2^n 2n个,非空子集个数为 2 n − 1 2^n-1 2n−1个,真子集个数为 2 n − 1 2^n-1 2n−1个(除去集合本身),非空真子集个数为 2 n − 2 2^n-2 2n−2个(除去集合本身和空集,此时 n ∈ N ∗ n \in N^* n∈N∗)
函数概念
- 定义:设 D 是一个非空实数集,𝑓是定义在 D 上的一个对应关系,若对于任意的实数 x ∈ D x \in D x∈D,都有唯一的实数 y ∈ R y \in R y∈R 通过𝑓与之对应,则称𝑓是定义在 D 上的一个函数,记作 y = f ( x ) , x ∈ D y=f(x), x \in D y=f(x),x∈D即𝑦是𝑥的函数,𝑥称为自变量,𝑦称为因变量。D 叫做这个函数的定义域(D),所有函数值构成的集合 { y ∣ y = f ( x ) , x ∈ D } \{y|y = f(x),x \in D\} { y∣y=f(x),x∈D} 成为函数的值域
- 函数的表示方法:表达式法(解析法)、图形法、数表法.
- 函数的三要素:定义域、对应法则、值域.
当两个函数的定义域和对应法则相同时,我们说这两个函数相同. - 隐函数的定义
由变量𝑥,𝑦满足的方程确定的函数𝑦=𝑓(𝑥)称为隐函数. (即一个函数𝑦=𝑓(𝑥),隐含在给定方程) x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1
函数的图形
- 函数图形的概念
函数 y = f ( x ) , x ∈ D y=f(x),x \in D y