Does Pytorch 1.4 support cuda10.1?

 

Does Pytorch 1.4 support cuda10.1?

 

PyTorch 1.4.0 shipped with CUDA 10.1 by default, so there is no separate package with the cu101 suffix, those are only for alternative versions. You just need to install the regular torch package:

pip install torch==1.4.0 -f https://download.pytorch.org/whl/torch_stable.html
### 回答1: 您好,安装 PyTorch 1.7.1 需要先安装 CUDA 10.1。以下是安装步骤: 1. 下载 CUDA 10.1 安装包,可以从 NVIDIA 官网下载。 2. 安装 CUDA 10.1,按照安装向导进行操作。 3. 安装 PyTorch 1.7.1,可以通过 pip 安装,命令如下: ``` pip install torch==1.7.1+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html ``` 或者通过 conda 安装,命令如下: ``` conda install pytorch==1.7.1 torchvision==.8.2 torchaudio==.7.2 cudatoolkit=10.1 -c pytorch ``` 安装完成后,可以通过导入 torch 库来验证是否安装成功。 ### 回答2: 在安装 pytorch 1.7.1 时,需要先安装 CUDA 10.1 版本。在安装 CUDA 10.1 之前,需要查看本机的电脑显卡版本是否支持 CUDA 10.1。 如果您的显卡支持 CUDA 10.1,可以按照以下步骤安装 CUDA 10.1: 1. 下载 CUDA 10.1 可以在 NVIDIA 官方网站下载 CUDA 10.1 安装包,下载地址是 https://developer.nvidia.com/cuda-10.1-download-archive-base。 2. 安装 CUDA 10.1 运行 CUDA 10.1 安装包,点击接受协议,选择安装路径,可以使用默认路径。安装过程中会提示选择是否安装 NVIDIA 显卡驱动,选择安装即可。安装完成后,需要重新启动电脑。 3. 安装 cuDNN cuDNN 是 NVIDIA 开发的 CUDA 深度学习库,是 pytorch 使用 GPU 加速的必要组件。下载地址是 https://developer.nvidia.com/cudnn ,需要先注册 NVIDIA 开发者账号。 下载 cuDNN 后,解压缩到 CUDA 安装目录,并添加环境变量,具体路径为 cudnn安装目录\cuda\bin。 4. 安装 pytorch1.7.1 在安装完 CUDA 和 cuDNN 后,我们可以使用 pip 工具安装 pytorch1.7.1: ``` pip install torch torchvision -f https://download.pytorch.org/whl/cu101/torch_stable.html ``` 安装完成后,我们可以使用以下代码验证 pytorch 是否成功安装: ``` import torchprint(torch.__version__)print(torch.cuda.is_available()) ``` 如果运行结果显示 pytorch 版本和是否支持 GPU,说明 pytorch1.7.1 已经成功安装并可以使用 GPU 加速了。如果无法使用 GPU 加速,可以检查是否安装了正确的 CUDA 和 cuDNN。 ### 回答3: PyTorch是一个用于深度学习任务的开源机器学习框架,它提供了简单易用的接口和高效的计算模型,适合各种规模的数据集和计算任务。安装CUDA 10.1是一个常见需求,因为它是一种广泛使用的GPU加速计算平台。在本文中,我们将介绍如何在Linux系统上安装PyTorch 1.7.1和CUDA 10.1。 步骤1:安装CUDA 10.1驱动程序 首先,我们需要安装CUDA 10.1驱动程序。我们可以从NVIDIA官方网站下载对应的驱动程序。在下载页面中,我们需要选择与我们的GPU卡适配的驱动程序版本,并下载对应的.run文件。 下载完成后,我们需要以root权限运行该文件,例如: ``` sudo sh cuda_10.1.243_418.87.00_linux.run ``` 然后,它将提示我们选择一些选项,如安装路径和是否安装NVIDIA显卡驱动程序。在这里,我们通常只需要按照默认选项进行安装即可。在安装完成后,我们可以测试CUDA是否成功安装,例如: ``` nvcc --version ``` 该命令将输出CUDA的版本信息。 步骤2:安装PyTorch 1.7.1 接下来,我们将安装PyTorch 1.7.1。我们可以使用pip或conda安装PyTorch,这里我们介绍使用conda安装的方法。我们可以使用以下命令安装PyTorch 1.7.1: ``` conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch ``` 该命令将安装PyTorch 1.7.1和对应的torchvision和torchaudio包。注意,我们需要指定cudatoolkit的版本为10.1,以确保PyTorch能够正确使用CUDA 10.1。 步骤3:测试PyTorch是否正确安装 安装完成后,我们可以使用以下命令测试PyTorch是否正确安装: ``` python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())" ``` 该命令将输出PyTorch的版本信息和CUDA是否可用的信息。如果输出的信息包含CUDA,则说明PyTorch已经成功地安装并正常运行。 总结 至此,我们已经介绍了如何在Linux系统上安装PyTorch 1.7.1和CUDA 10.1。在进行深度学习任务时,使用GPU加速可以明显提高计算速度和效率,因此这种安装方式非常实用。需要注意的是,我们在安装过程中需要确保GPU卡适配的驱动程序与CUDA的版本匹配,以免出现不兼容的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值