深度学习有趣的应用

深度学习有趣的应用


       参考:http://36kr.com/p/5055788.html

       深度学习技术可以应用于许多领域,不仅在机器翻译、自然语言处理、目标检测识别、视觉跟踪等方面显示出优异的性能,还有很多有趣的应用。

1、模糊图像清晰化;

        Image super-resolution through deep learning,

        https://github.com/david-gpu/srez

2、文字转语音;

        WaveNet: A Generative Model for Raw Audio

        http://www.tuicool.com/articles/ZNZbUfu

3、创作乐曲;

4、图片转为画作风格;

        http://www.jianshu.com/p/bd3c015f51e3

        http://m.linuxeden.com/wap.php?action=article&id=164333

5、新型字体的生成;

        汉字风格迁移项目Rewrite:利用神经网络学习设计汉字新字体

        http://wr21c3c522.dedeadmin.com/ddafitc620161104c6n472295152.shtml

6、补缺失的画像;

        如何在TensorFlow中用深度学习修复图像?

        http://www.jiqizhixin.com/article/1417?utm_source=tuicool&utm_medium=referral

7、训练机器人行走抓取物体;

        http://techcrunch.cn/2016/03/10/what-could-go-wrong/

8、理解并为图片添加描述;

       Generation and Comprehension of Unambiguous Object Descriptions

       https://arxiv.org/abs/1511.02283

       https://github.com/mjhucla/Google_Refexp_toolbox

       http://www.leiphone.com/news/201607/5OwIfo68ONcsXHD0.html

9、无人驾驶

       http://www.leiphone.com/news/201606/TGfD5qmbrNH4nFxU.html

       End to End Learning for Self-Driving Cars

       http://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf


深度学习是一种机器学习的分支,通过模拟人脑神经网络的方式,对大量数据进行训练和学习,从而实现智能化的数据处理和决策。在GitHub上,有很多有趣深度学习应用。 首先,深度学习在图像识别方面的应用非常广泛。许多开源项目通过深度学习模型,可以实现图片分类、目标检测、人脸识别等能力。这些应用可以应用在各个领域,如安防监控、医学影像诊断等。 其次,自然语言处理也是深度学习的重要应用之一。通过深度学习模型,可以实现自动翻译、文本摘要、情感分析等任务。这些应用可以帮助人们更快速地理解和处理大量的文本信息。 另外,深度学习在音频处理领域也有有趣应用。例如,通过深度学习模型可以实现语音识别、语音合成、音乐生成等功能。这些应用可以广泛运用在智能音箱、语音助手等设备上。 此外,深度学习还可以用于推荐系统和个性化推荐。通过对用户的历史行为和兴趣进行建模,深度学习模型可以为用户提供更加个性化的推荐服务,如商品推荐、新闻推荐等。 最后,深度学习还可以应用在金融领域。通过对金融数据的分析和预测,深度学习模型可以帮助投资者进行市场预测和风险控制,提高投资决策的准确性和效率。 总而言之,深度学习在GitHub上有许多有趣应用,涵盖了图像识别、自然语言处理、音频处理、推荐系统以及金融等领域,为各行业带来了更加智能和高效的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值