容斥dp的数学基础

容斥dp的数学基础

本文不涉及:

  • 单位根反演
  • min-max容斥
  • 生成函数
  • 集合幂级数
  • 微积分
  • 多项式计数

记号

  • 集合: [ n ] = [ 1 , n ] ∩ Z [n]=[1,n]\cap\mathbb{Z} [n]=[1,n]Z
  • 排列数: A n m = n m ‾ A^m_n=n^{\underline m} Anm=nm
  • 环排列数: Q n = ( n − 1 ) ! Q_n=(n-1)! Qn=(n1)!
  • 环排列数: Q n m = n ! m ( n − m ) ! Q_n^m=\frac{n!}{m(n-m)!} Qnm=m(nm)!n!
  • 组合数: C n m = ( n m ) C^m_n=\begin{pmatrix}n\\m\end{pmatrix} Cnm=(nm)
  • 无符号第一类斯特林数: [ n m ] \begin{bmatrix}n\\m\end{bmatrix} [nm]
  • 表示 n n n个有标号元素划分到 m m m个无标号非空环排列的方案数,也即 n n n元集合划分为 m m m个非空环排列的方案数。
  • 第二类斯特林数: { n m } \begin{Bmatrix}n\\m\end{Bmatrix} {nm}
    表示 n n n个有标号元素划分到 m m m个无标号非空集合的方案数,也即 n n n元集合划分为 m m m个非空子集的方案数。
  • 空集的补: i ∈ ∅ : i ‾ = U i\in\varnothing:\overline i=U i:i=U

对于超过定义范围的组合数、斯特林数等,均认为 0 0 0

和式的变换

容斥原理

  • 补集转换 : S = U − S ‾ 补集转换:S=U-\overline{ S} 补集转换:S=US
  • 德 ⋅ 摩根定律 : ⋃ n i = 1 S i ‾ = ⋂ n i = 1 S i ‾ , ⋂ n i = 1 S i ‾ = ⋃ n i = 1 S i ‾ 德·摩根定律:\overline{\underset{i=1}{\overset{n}{\bigcup}}S_i}=\underset{i=1}{\overset{n}{\bigcap}}\overline{S_i},\overline{\underset{i=1}{\overset{n}{\bigcap}}S_i }=\underset{i=1}{\overset{n}{\bigcup}}\overline{S_i} 摩根定律:i=1nSi=i=1nSi,i=1nSi=i=1nSi
  • 集合的并 : ∣ ⋃ n i = 1 S i ∣ = ∑ ∅ ≠ T ⊆ [ n ] ( − 1 ) ∣ T ∣ − 1 ∣ ⋂ i ∈ T S i ∣ 集合的并:\left|\underset{i=1}{\overset{n}{\bigcup}}S_i \right|={\underset{\varnothing\not=T\subseteq [n]}{\overset{}\sum}}(-1)^{|T|-1}\left |{\underset{i\in T}{\overset{}\bigcap}}S_i\right | 集合的并: i=1nSi ==T[n](1)T1 iTSi
    集合的并=集合的交的交错和(这里是奇加偶减),去掉模也成立。
  • 集合的交 : ∣ ⋂ n i = 1 S i ∣ = ∑ T ⊆ [ n ] ( − 1 ) ∣ T ∣ ∣ ⋂ i ∈ T S i ‾ ∣ 集合的交:\left| {\underset{i=1}{\overset{n}\bigcap}}S_i\right|={\underset{T\subseteq [n]}{\overset{}\sum}}(-1)^{|T|}\left|{\underset{i\in T}{\bigcap}\overline{S_i}}\right| 集合的交: i=1nSi =T[n](1)T iTSi
    集合的交=补集的交的交错和(这里是奇减偶加),去掉模也成立。

以上可归纳证明。

反演的本质

对于向量 F , G F,G F,G,有关系矩阵 H H H
F = H × G ⇔ G = H − 1 × F F=H\times G\Leftrightarrow G=H^{-1}\times F F=H×GG=H1×F

G → F G\rightarrow F GF称为变换,从 F ← G F\leftarrow G FG称为反演。

二项式反演

  • 二项式反演原理:
    ∑ n i = 0 ( n i ) ( − 1 ) n − i = ∑ n i = 0 ( n i ) ( − 1 ) i = [ n = 0 ] \underset{i=0}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i}=\underset{i=0}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{i}=[n=0] i=0n(ni)(1)ni=i=0n(ni)(1)i=[n=0]

备注,很明显这几个东西不成立
∑ n i = m ( n i ) ( − 1 ) n − i = [ n = m ] \underset{i=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i}=[n=m] i=mn(ni)(1)ni=[n=m]
∑ m i = n ( i n ) ( − 1 ) i − n = [ n = m ] \underset{i=n}{\overset m\sum}\begin{pmatrix}i\\n\end{pmatrix}(-1)^{i-n}=[n=m] i=nm(in)(1)in=[n=m]

  • 二项式反演:
    f ( n ) = ∑ n i = m ( n i ) g ( i ) ⇔ g ( n ) = ∑ n i = m ( n i ) ( − 1 ) n − i f ( i ) f(n)=\underset{i=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}g(i)\Leftrightarrow g(n)=\underset{i=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i}f(i) f(n)=i=mn(ni)g(i)g(n)=i=mn(ni)(1)nif(i)
    f ( n ) = ∑ m i = n ( i n ) g ( i ) ⇔ g ( n ) = ∑ m i = n ( i n ) ( − 1 ) i − n f ( i ) f(n)=\underset{i=n}{\overset{m}\sum}\begin{pmatrix}i\\ n\end{pmatrix}g(i)\Leftrightarrow g(n)=\underset{i=n}{\overset{m}\sum}\begin{pmatrix}i\\ n\end{pmatrix}(-1)^{i-n}f(i) f(n)=i=nm(in)g(i)g(n)=i=nm(in)(1)inf(i)

∑ n i = 0 ( n i ) ( − 1 ) n − i = ∑ n i = 0 ( n i ) ( − 1 ) i = [ n = 0 ] \underset{i=0}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i}=\underset{i=0}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{i}=[n=0] i=0n(ni)(1)ni=i=0n(ni)(1)i=[n=0]
证明:
我们有二项式定理: ( 1 − 1 ) n = ∑ n i = 0 ( n i ) ( − 1 ) n − i (1-1)^n=\underset{i=0}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i} (11)n=i=0n(ni)(1)ni
QED.

f ( n ) = ∑ n i = m ( n i ) g ( i ) ⇔ g ( n ) = ∑ n i = m ( n i ) ( − 1 ) n − i f ( i ) f(n)=\underset{i=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}g(i)\Leftrightarrow g(n)=\underset{i=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i}f(i) f(n)=i=mn(ni)g(i)g(n)=i=mn(ni)(1)nif(i)
证明:
只证明从左推右,反向同理:
g ( n ) = ∑ n i = m ( n i ) ( − 1 ) n − i f ( i ) g(n)=\underset{i=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i}f(i) g(n)=i=mn(ni)(1)nif(i)
反演一般的思路都考虑将 f ( i ) f(i) f(i)定义带入:
= ∑ n i = m ( n i ) ( − 1 ) n − i ∑ i j = m ( i j ) g ( j ) =\underset{i=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}(-1)^{n-i}\underset{j=m}{\overset{i}\sum}\begin{pmatrix}i\\ j\end{pmatrix}g(j) =i=mn(ni)(1)nij=mi(ij)g(j)
= ∑ n i = m ∑ i j = m ( n i ) ( i j ) ( − 1 ) n − i g ( j ) =\underset{i=m}{\overset{n}\sum}\underset{j=m}{\overset{i}\sum}\begin{pmatrix}n\\ i\end{pmatrix}\begin{pmatrix}i\\ j\end{pmatrix}(-1)^{n-i}g(j) =i=mnj=mi(ni)(ij)(1)nig(j)
j > i j>i j>i超过范围的组合数认为是 0 0 0,因此我们可以扩大枚举范围:
= ∑ n i = m ∑ n j = m ( n i ) ( i j ) ( − 1 ) n − i g ( j ) =\underset{i=m}{\overset{n}\sum}\underset{j=m}{\overset{n}\sum}\begin{pmatrix}n\\ i\end{pmatrix}\begin{pmatrix}i\\ j\end{pmatrix}(-1)^{n-i}g(j) =i=mnj=mn(ni)(ij)(1)nig(j)
分离组合数:
= ∑ n i = m ∑ n j = m ( n j ) ( n − j i − j ) ( − 1 ) n − i g ( j ) =\underset{i=m}{\overset{n}\sum}\underset{j=m}{\overset{n}\sum}\begin{pmatrix}n\\ j\end{pmatrix}\begin{pmatrix}n-j\\ i-j\end{pmatrix}(-1)^{n-i}g(j) =i=mnj=mn(nj)(njij)(1)nig(j)
= ∑ n j = m ( n j ) g ( j ) ∑ n i = m ( n − j i − j ) ( − 1 ) n − i =\underset{j=m}{\overset{n}\sum}\begin{pmatrix}n\\ j\end{pmatrix}g(j)\underset{i=m}{\overset{n}\sum}\begin{pmatrix}n-j\\ i-j\end{pmatrix}(-1)^{n-i} =j=mn(nj)g(j)i=mn(njij)(1)ni
= ∑ n j = m ( n j ) g ( j ) ∑ n i = j ( n − j i − j ) ( − 1 ) n − i =\underset{j=m}{\overset{n}\sum}\begin{pmatrix}n\\ j\end{pmatrix}g(j)\underset{i=j}{\overset{n}\sum}\begin{pmatrix}n-j\\ i-j\end{pmatrix}(-1)^{n-i} =j=mn(nj)g(j)i=jn(njij)(1)ni
替换指标变量:
= ∑ n j = m ( n j ) g ( j ) ∑ n − j i = j ( n − j i ) ( − 1 ) ( n − j ) − i =\underset{j=m}{\overset{n}\sum}\begin{pmatrix}n\\ j\end{pmatrix}g(j)\underset{i=j}{\overset{n-j}\sum}\begin{pmatrix}n-j\\ i\end{pmatrix}(-1)^{(n-j)-i} =j=mn(nj)g(j)i=jnj(nji)(1)(nj)i
= ∑ n j = m ( n j ) g ( j ) [ n − j = 0 ] =\underset{j=m}{\overset{n}\sum}\begin{pmatrix}n\\ j\end{pmatrix}g(j)[n-j=0] =j=mn(nj)g(j)[nj=0]
= ∑ n j = m ( n j ) g ( j ) [ n = j ] =\underset{j=m}{\overset{n}\sum}\begin{pmatrix}n\\ j\end{pmatrix}g(j)[n=j] =j=mn(nj)g(j)[n=j]
= g ( n ) =g(n) =g(n)

QED.

f ( n ) = ∑ m i = n ( i n ) g ( i ) ⇔ g ( n ) = ∑ m i = n ( i n ) ( − 1 ) i − n f ( i ) f(n)=\underset{i=n}{\overset{m}\sum}\begin{pmatrix}i\\ n\end{pmatrix}g(i)\Leftrightarrow g(n)=\underset{i=n}{\overset{m}\sum}\begin{pmatrix}i\\ n\end{pmatrix}(-1)^{i-n}f(i) f(n)=i=nm(in)g(i)g(n)=i=nm(in)(1)inf(i)
证明从左向右:
g ( n ) = ∑ m i = n ( i n ) ( − 1 ) i − n f ( i ) g(n)=\underset{i=n}{\overset{m}\sum}\begin{pmatrix}i\\ n\end{pmatrix}(-1)^{i-n}f(i) g(n)=i=nm(in)(1)inf(i)
= ∑ m i = n ( i n ) ( − 1 ) i − n ∑ m j = i ( j i ) g ( j ) =\underset{i=n}{\overset{m}\sum}\begin{pmatrix}i\\ n\end{pmatrix}(-1)^{i-n}\underset{j=i}{\overset{m}\sum}\begin{pmatrix}j\\ i\end{pmatrix}g(j) =i=nm(in)(1)inj=im(ji)g(j)
= ∑ m i = n ∑ m j = i ( j i ) ( i n ) ( − 1 ) i − n g ( j ) =\underset{i=n}{\overset{m}\sum}\underset{j=i}{\overset{m}\sum}\begin{pmatrix}j\\ i\end{pmatrix}\begin{pmatrix}i\\ n\end{pmatrix}(-1)^{i-n}g(j) =i=nmj=im(ji)(in)(1)ing(j)
同理可以改变枚举范围:
= ∑ m i = n ∑ m j = n ( j i ) ( i n ) ( − 1 ) i − n g ( j ) =\underset{i=n}{\overset{m}\sum}\underset{j=n}{\overset{m}\sum}\begin{pmatrix}j\\ i\end{pmatrix}\begin{pmatrix}i\\ n\end{pmatrix}(-1)^{i-n}g(j) =i=nmj=nm(ji)(in)(1)ing(j)
(这里改变枚举范围是因为有组合数的限制,其实我们为了改变枚举范围完全可以手动创造一个限制,在和式的变换里面写了。)
= ∑ m i = n ∑ m j = n ( j n ) ( j − n i − n ) ( − 1 ) i − n g ( j ) =\underset{i=n}{\overset{m}\sum}\underset{j=n}{\overset{m}\sum}\begin{pmatrix}j\\ n\end{pmatrix}\begin{pmatrix}j-n\\ i-n\end{pmatrix}(-1)^{i-n}g(j) =i=nmj=nm(jn)(jnin)(1)ing(j)
= ∑ m j = n g ( j ) ( j n ) ∑ m i = n ( j − n i − n ) ( − 1 ) i − n =\underset{j=n}{\overset{m}\sum}g(j)\begin{pmatrix}j\\ n\end{pmatrix}\underset{i=n}{\overset{m}\sum}\begin{pmatrix}j-n\\ i-n\end{pmatrix}(-1)^{i-n} =j=nmg(j)(jn)i=nm(jnin)(1)in
= ∑ m j = n g ( j ) ( j n ) ∑ m − n i = 0 ( j − n i ) ( − 1 ) i =\underset{j=n}{\overset{m}\sum}g(j)\begin{pmatrix}j\\ n\end{pmatrix}\underset{i=0}{\overset{m-n}\sum}\begin{pmatrix}j-n\\ i\end{pmatrix}(-1)^{i} =j=nmg(j)(jn)i=0mn(jni)(1)i
= ∑ m j = n g ( j ) ( j n ) ∑ j − n i = 0 ( j − n i ) ( − 1 ) i =\underset{j=n}{\overset{m}\sum}g(j)\begin{pmatrix}j\\ n\end{pmatrix}\underset{i=0}{\overset{j-n}\sum}\begin{pmatrix}j-n\\ i\end{pmatrix}(-1)^{i} =j=nmg(j)(jn)i=0jn(jni)(1)i
= ∑ m j = n g ( j ) ( j n ) [ j = n ] =\underset{j=n}{\overset{m}\sum}g(j)\begin{pmatrix}j\\ n\end{pmatrix}[j=n] =j=nmg(j)(jn)[j=n]
= g ( n ) =g(n) =g(n)

斯特林反演

  • ∑ n i = m [ n i ] { i m } ( − 1 ) i − m = [ n = m ] \underset{i=m}{\overset{n}\sum}\begin{bmatrix}n\\ i\end{bmatrix}\begin{Bmatrix}i\\ m\end{Bmatrix}(-1)^{i-m}=[n=m] i=mn[ni]{im}(1)im=[n=m]
  • ∑ n i = m { n i } [ i m ] ( − 1 ) i − m = [ n = m ] \underset{i=m}{\overset{n}\sum}\begin{Bmatrix}n\\ i\end{Bmatrix}\begin{bmatrix}i\\ m\end{bmatrix}(-1)^{i-m}=[n=m] i=mn{ni}[im](1)im=[n=m]
  • f ( n ) = ∑ n i = 0 [ n i ] g ( i ) ⇔ g ( n ) = ∑ n i = 0 { n i } ( − 1 ) n − i f ( i ) f(n)=\underset{i=0}{\overset{n}\sum}\begin{bmatrix}n\\ i\end{bmatrix}g(i)\Leftrightarrow g(n)=\underset{i=0}{\overset{n}\sum}\begin{Bmatrix}n\\ i\end{Bmatrix}(-1)^{n-i}f(i) f(n)=i=0n[ni]g(i)g(n)=i=0n{ni}(1)nif(i)
  • f ( n ) = ∑ m i = n [ i n ] g ( i ) ⇔ g ( n ) = ∑ m i = n { i n } ( − 1 ) i − n f ( i ) f(n)=\underset{i=n}{\overset{m}\sum}\begin{bmatrix}i\\ n\end{bmatrix}g(i)\Leftrightarrow g(n)=\underset{i=n}{\overset{m}\sum}\begin{Bmatrix}i\\ n\end{Bmatrix}(-1)^{i-n}f(i) f(n)=i=nm[in]g(i)g(n)=i=nm{in}(1)inf(i)

∑ n i = m { n i } [ i m ] ( − 1 ) i − m = [ n = m ] \underset{i=m}{\overset{n}\sum}\begin{Bmatrix}n\\ i\end{Bmatrix}\begin{bmatrix}i\\ m\end{bmatrix}(-1)^{i-m}=[n=m] i=mn{ni}[im](1)im=[n=m]
证明:
首先我们需要知道:简单斯特林反演
因此:
x n = ∑ n i = 0 { n i } x i ‾ = ∑ n i = 0 { n i } ∑ i j = 0 [ i j ] ( − 1 ) i − j x j x^n=\underset{i=0}{\overset{n}\sum}\begin{Bmatrix}n\\i\end{Bmatrix}x^{\underline i}=\underset{i=0}{\overset{n}\sum}\begin{Bmatrix}n\\i\end{Bmatrix}{\underset{j=0}{\overset{i}\sum}}\begin{bmatrix}i\\j\end{bmatrix}(-1)^{i-j}x^j xn=i=0n{ni}xi=i=0n{ni}j=0i[ij](1)ijxj
= ∑ n i = 0 ∑ i j = 0 x j { n i } [ i j ] ( − 1 ) i − j =\underset{i=0}{\overset{n}\sum}{\underset{j=0}{\overset{i}\sum}}x^j\begin{Bmatrix}n\\i\end{Bmatrix}\begin{bmatrix}i\\j\end{bmatrix}(-1)^{i-j} =i=0nj=0ixj{ni}[ij](1)ij
= ∑ n i = 0 ∑ n j = 0 x j { n i } [ i j ] ( − 1 ) i − j =\underset{i=0}{\overset{n}\sum}{\underset{j=0}{\overset{n}\sum}}x^j\begin{Bmatrix}n\\i\end{Bmatrix}\begin{bmatrix}i\\j\end{bmatrix}(-1)^{i-j} =i=0nj=0nxj{ni}[ij](1)ij
= ∑ n j = 0 x j ∑ n i = 0 { n i } [ i j ] ( − 1 ) i − j ={\underset{j=0}{\overset{n}\sum}}x^j\underset{i=0}{\overset{n}\sum}\begin{Bmatrix}n\\i\end{Bmatrix}\begin{bmatrix}i\\j\end{bmatrix}(-1)^{i-j} =j=0nxji=0n{ni}[ij](1)ij
= ∑ n j = 0 x j ∑ n i = j { n i } [ i j ] ( − 1 ) i − j ={\underset{j=0}{\overset{n}\sum}}x^j\underset{i=j}{\overset{n}\sum}\begin{Bmatrix}n\\i\end{Bmatrix}\begin{bmatrix}i\\j\end{bmatrix}(-1)^{i-j} =j=0nxji=jn{ni}[ij](1)ij
对比系数我们知道: ∑ n i = j { n i } [ i j ] ( − 1 ) i − j = [ j = n ] \underset{i=j}{\overset{n}\sum}\begin{Bmatrix}n\\i\end{Bmatrix}\begin{bmatrix}i\\j\end{bmatrix}(-1)^{i-j}=[j=n] i=jn{ni}[ij](1)ij=[j=n]

QED.

∑ n i = m [ n i ] { i m } ( − 1 ) i − m = [ n = m ] \underset{i=m}{\overset{n}\sum}\begin{bmatrix}n\\ i\end{bmatrix}\begin{Bmatrix}i\\ m\end{Bmatrix}(-1)^{i-m}=[n=m] i=mn[ni]{im}(1)im=[n=m],的证明,有类似的过程。

其他证明也是平凡的。

莫比乌斯反演

  • ∑ d ∣ n μ ( d ) = [ n = 1 ] \underset{d|n}\sum \mu(d)=[n=1] dnμ(d)=[n=1]
  • ∑ d ∣ n m μ ( d ) = [ n = m ] \underset{d|\frac nm}\sum \mu(d)=[n=m] dmnμ(d)=[n=m]
  • f ( n ) = ∑ d ∣ n g ( d ) ⇔ g ( n ) = ∑ d ∣ n μ ( n d ) f ( d ) f(n)=\underset{d|n}\sum g(d)\Leftrightarrow g(n)=\underset{d|n}\sum\mu\left(\frac nd\right)f(d) f(n)=dng(d)g(n)=dnμ(dn)f(d)
  • f ( n ) = ∑ n ∣ d g ( d ) ⇔ g ( n ) = ∑ n ∣ d μ ( d n ) f ( d ) f(n)=\underset{n|d}\sum g(d)\Leftrightarrow g(n)=\underset{n|d}\sum \mu\left(\frac dn\right)f(d) f(n)=ndg(d)g(n)=ndμ(nd)f(d)
    这个式子看起来会求无穷次,但在实际问题中,通常 f , g f,g f,g函数在自变量大于一定的值时就恒为 0 0 0了。

证明详见:莫比乌斯反演

子集反演

  • 子集反演原理:
    ∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ = [ S = ∅ ] \underset{T\subseteq S}\sum (-1)^{|S|-|T|}=[S=\varnothing] TS(1)ST=[S=]
    ∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ = [ S = U ] \underset{S\subseteq T}\sum (-1)^{|T|-|S|}=[S=U] ST(1)TS=[S=U]
  • 子集反演:
    f ( S ) = ∑ T ⊆ S g ( T ) ⇔ g ( S ) = ∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ f ( T ) f(S)=\underset{T\subseteq S}\sum g(T)\Leftrightarrow g(S)=\underset{T\subseteq S}{\sum}(-1)^{|S|-|T|}f(T) f(S)=TSg(T)g(S)=TS(1)STf(T)
    f ( S ) = ∑ S ⊆ T g ( T ) ⇔ g ( S ) = ∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ f ( T ) f(S)=\underset{S\subseteq T}\sum g(T)\Leftrightarrow g(S)=\underset{S\subseteq T}\sum (-1)^{|T|-|S|}f(T) f(S)=STg(T)g(S)=ST(1)TSf(T)
    隐含条件 T ⊆ U T\subseteq U TU

∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ = [ S = ∅ ] \underset{T\subseteq S}\sum (-1)^{|S|-|T|}=[S=\varnothing] TS(1)ST=[S=]
证明:
我们可以对于大小相等的 T T T同时计算,因此我们枚举一个 i i i表示 ∣ T ∣ |T| T,则大小为 i i i ∣ T ∣ |T| T共有 ( n i ) \begin{pmatrix}n\\i\end{pmatrix} (ni)个,其贡献为 ( − 1 ) ∣ S ∣ − i (-1)^{|S|-i} (1)Si
∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ = ∑ ∣ S ∣ i = 0 ( ∣ S ∣ i ) ( − 1 ) ∣ S ∣ − i = ∑ ∣ S ∣ i = 0 ( ∣ S ∣ i ) ( − 1 ) i = [ ∣ S ∣ = 0 ] = [ S = ∅ ] \underset{T\subseteq S}\sum (-1)^{|S|-|T|}=\underset{i=0}{\overset{|S|}\sum}\begin{pmatrix}|S|\\i\end{pmatrix}(-1)^{|S|-i}=\underset{i=0}{\overset{|S|}\sum}\begin{pmatrix}|S|\\i\end{pmatrix}(-1)^{i}=[|S|=0]=[S=\varnothing] TS(1)ST=i=0S(Si)(1)Si=i=0S(Si)(1)i=[S=0]=[S=]

QED.

∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ = [ S = U ] \underset{S\subseteq T}\sum (-1)^{|T|-|S|}=[S=U] ST(1)TS=[S=U]
证明(设 U U U表示全集):
∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ = ∑ S ⊆ T ⊆ U ( − 1 ) ∣ T ∣ − ∣ S ∣ \underset{S\subseteq T}\sum (-1)^{|T|-|S|}=\underset{S\subseteq T\subseteq U}\sum (-1)^{|T|-|S|} ST(1)TS=STU(1)TS
= ∑ T ⊆ U − S ( − 1 ) ∣ T + S ∣ − ∣ S ∣ =\underset{T\subseteq U-S}\sum (-1)^{|T+S|-|S|} =TUS(1)T+SS
= ∑ T ⊆ U − S ( − 1 ) ∣ T ∣ =\underset{T\subseteq U-S}\sum (-1)^{|T|} =TUS(1)T
= ∑ ∣ U − S ∣ i = 0 ( ∣ U − S ∣ i ) ( − 1 ) i =\underset{i=0}{\overset{|U-S|}\sum}\begin{pmatrix}|U-S|\\i\end{pmatrix}(-1)^{i} =i=0US(USi)(1)i
= [ ∣ U − S ∣ = 0 ] =[|U-S|=0] =[US=0]
= [ S = U ] =[S=U] =[S=U]

f ( S ) = ∑ T ⊆ S g ( T ) ⇔ g ( S ) = ∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ f ( T ) f(S)=\underset{T\subseteq S}\sum g(T)\Leftrightarrow g(S)=\underset{T\subseteq S}{\sum}(-1)^{|S|-|T|}f(T) f(S)=TSg(T)g(S)=TS(1)STf(T)
证明:
g ( S ) = ∑ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ ∑ P ⊆ T g ( P ) g(S)=\underset{T\subseteq S}{\sum}(-1)^{|S|-|T|}\underset{P\subseteq T}\sum g(P) g(S)=TS(1)STPTg(P)
= ∑ T ⊆ S ∑ P ⊆ T g ( P ) ( − 1 ) ∣ S ∣ − ∣ T ∣ =\underset{T\subseteq S}{\sum}\underset{P\subseteq T}\sum g(P)(-1)^{|S|-|T|} =TSPTg(P)(1)ST
= ∑ P ⊆ T g ( P ) ∑ P ⊆ T ⊆ S ( − 1 ) ∣ S ∣ − ∣ T ∣ =\underset{P\subseteq T}\sum g(P)\underset{P\subseteq T\subseteq S}{\sum}(-1)^{|S|-|T|} =PTg(P)PTS(1)ST
= ∑ P ⊆ T g ( P ) ∑ T ⊆ S − P ( − 1 ) ∣ S ∣ − ∣ T + P ∣ =\underset{P\subseteq T}\sum g(P)\underset{T\subseteq S-P}{\sum}(-1)^{|S|-|T+P|} =PTg(P)TSP(1)ST+P
= ∑ P ⊆ T g ( P ) ∑ T ⊆ S − P ( − 1 ) ∣ S ∣ − ∣ T ∣ − ∣ P ∣ =\underset{P\subseteq T}\sum g(P)\underset{T\subseteq S-P}{\sum}(-1)^{|S|-|T|-|P|} =PTg(P)TSP(1)STP
= ∑ P ⊆ T g ( P ) ∑ T ⊆ S − P ( − 1 ) ∣ S − P ∣ − ∣ T ∣ =\underset{P\subseteq T}\sum g(P)\underset{T\subseteq S-P}{\sum}(-1)^{|S-P|-|T|} =PTg(P)TSP(1)SPT
= ∑ P ⊆ T g ( P ) [ P = S ] =\underset{P\subseteq T}\sum g(P)[P=S] =PTg(P)[P=S]
= g ( S ) =g(S) =g(S)

QED.

f ( S ) = ∑ S ⊆ T g ( T ) ⇔ g ( S ) = ∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ f ( T ) f(S)=\underset{S\subseteq T}\sum g(T)\Leftrightarrow g(S)=\underset{S\subseteq T}\sum (-1)^{|T|-|S|}f(T) f(S)=STg(T)g(S)=ST(1)TSf(T)
证明:
g ( S ) = ∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ f ( T ) = ∑ S ⊆ T ( − 1 ) ∣ T ∣ − ∣ S ∣ ∑ T ⊆ P g ( P ) g(S)=\underset{S\subseteq T}\sum (-1)^{|T|-|S|}f(T)=\underset{S\subseteq T}\sum (-1)^{|T|-|S|}\underset{T\subseteq P}\sum g(P) g(S)=ST(1)TSf(T)=ST(1)TSTPg(P)
= ∑ S ⊆ T ∑ T ⊆ P g ( P ) ( − 1 ) ∣ T ∣ − ∣ S ∣ =\underset{S\subseteq T}\sum\underset{T\subseteq P}\sum g(P) (-1)^{|T|-|S|} =STTPg(P)(1)TS
= ∑ S ⊆ P g ( P ) ∑ S ⊆ T ⊆ P ( − 1 ) ∣ T ∣ − ∣ S ∣ =\underset{S\subseteq P}\sum g(P) \underset{S\subseteq T\subseteq P}\sum (-1)^{|T|-|S|} =SPg(P)STP(1)TS
= ∑ S ⊆ P g ( P ) ∑ T ⊆ P − S ( − 1 ) ∣ T + S ∣ − ∣ S ∣ =\underset{S\subseteq P}\sum g(P) \underset{T\subseteq P-S}\sum (-1)^{|T+S|-|S|} =SPg(P)TPS(1)T+SS
= ∑ S ⊆ P g ( P ) ∑ T ⊆ P − S ( − 1 ) ∣ T ∣ =\underset{S\subseteq P}\sum g(P) \underset{T\subseteq P-S}\sum (-1)^{|T|} =SPg(P)TPS(1)T
= ∑ S ⊆ P g ( P ) [ P = S ] =\underset{S\subseteq P}\sum g(P) [P=S] =SPg(P)[P=S]
= g ( S ) =g(S) =g(S)

QED.

高维反演

对于一维反演:
f ( n ) = ∑ n i = 0 h ( n , i ) g ( i ) ⇐ g ( n ) = ∑ n i = 0 h − 1 ( n , i ) f ( i ) f(n)=\underset{i=0}{\overset n \sum}h(n,i)g(i)\Leftarrow g(n)=\underset{i=0}{\overset n\sum}h^{-1}(n,i)f(i) f(n)=i=0nh(n,i)g(i)g(n)=i=0nh1(n,i)f(i)
f ′ ( n ) = ∑ n i = 0 h ′ ( n , i ) g ′ ( i ) ⇐ g ′ ( n ) = ∑ n i = 0 h ′ − 1 ( n , i ) f ′ ( i ) f'(n)=\underset{i=0}{\overset n \sum}h'(n,i)g'(i)\Leftarrow g'(n)=\underset{i=0}{\overset n\sum}h'^{-1}(n,i)f'(i) f(n)=i=0nh(n,i)g(i)g(n)=i=0nh1(n,i)f(i)

就会有:
f ( n , m ) = ∑ n i = 0 h ( n , i ) ∑ m j = 0 h ′ ( m , j ) g ( i , j ) ⇔ g ( n , m ) = ∑ n i = 0 h − 1 ( n , i ) ∑ m j = 0 h ′ − 1 ( m , j ) f ( i , j ) f(n,m)=\underset{i=0}{\overset n \sum}h(n,i)\underset{j=0}{\overset m \sum}h'(m,j)g(i,j)\Leftrightarrow g(n,m)=\underset{i=0}{\overset n \sum}h^{-1}(n,i)\underset{j=0}{\overset m \sum}h'^{-1}(m,j)f(i,j) f(n,m)=i=0nh(n,i)j=0mh(m,j)g(i,j)g(n,m)=i=0nh1(n,i)j=0mh1(m,j)f(i,j)

证明请读者自己编一个吧,也不难。

后记

于是皆大欢喜。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值