带有两个/三个未知数的算数-几何均值不等式的证明及其思路解析

这是一篇学习手记。

注:尽管文中大量使用了“一个显然的想法…”“自然而然,我们会想…”等词语,我们也必须承认,这些伟大成果的证明需要天才的思路和不断的尝试。因此,第一次学习理解不了是很有可能的。(比如我)

基础:带有两个未知数的算数-几何均值不等式的证明:

存在如下不等式:
在这里插入图片描述
由①可以得出一个推论:(我们在下面顺便给出①的证明)
!](https://img-blog.csdnimg.cn/235df207e59848288757be19cd22e2b8.png)
上面证明中的第三行用到了换元思想,这是一种重要的思想。

带有三个未知数呢?

我们称②为带有两个未知数的算数-几何均值不等式(有些教材也称为基本不等式),类比,我们可以猜想存在如下式子:

我们发现,类比二次的完全平方公式(a-b)^2,运用三次的完全平方公式并不能直接证明上述猜想,因此我们采取另一个常见的方法——分析法——来证明:
在这里插入图片描述
这时候,我们将上面遇到的问题抽象成如下问题:
在这里插入图片描述
解决了上面的问题后,我们继续进行推导:
在这里插入图片描述
但这个式子并不一定大于等于0,不同于①适用于全体实数。
自然而然,我们添加条件:
在这里插入图片描述
此时,显然上式≥0 。
则:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值