算法导论----<归并排序>及实例

/*
MERGE(A,p,q,r)
n1 = q - p + 1
n2 = r - q
let L[1..n1 + 1] and R[1..n2+1] be new arrays
for i = 1 to n1
L[i] = A[p + i - 1]
for j = 1 to n2
R[j] = A[q+j]
L[n1 + 1] = S
R[n2 + 1] = S
i = 1
j = 1
for k = p to r
if L[i] <= R[j]
A[k] = L[i]
i = i + 1
else A[k] = R[j]
j = j + 1
*/


#include <iostream>
#include <string.h>
using namespace std;
int i,j,k;
int A[10];
void merge(int *A,int p,int q,int r)
{
int n1 = q - p +1;
int n2 = r - q;
int *L = new int[n1+1];
int *R = new int[n2+1];

for(i = 0;i<n1;i++){
*(L+i) = *(A+p+i);
}
//哨兵元素
*(L+n1) = 1000000; 
for(i = 0;i<n2;i++){
*(R+i) = *(A+q+i+1);
}
*(R+n2) = 1000000;
i = 0;
j = 0;
for(k = p;k<=r;k++)
{
if(L[i] <= R[j])
{
A[k] = L[i];
i++;
}
else
{
A[k] = R[j];
j++;
}
}
delete []L;
delete []R;
}
void mergesort(int *A,int p,int r)
{
int q;
if(p < r)
{
q = (p+r) / 2;
mergesort(A,p,q);
mergesort(A,q+1,r);
merge(A,p,q,r);
}

}
int main(){
for(i = 0;i<sizeof(A)/sizeof(A[0]);i++){
cin>>A[i];
}

mergesort(A,0,9);

for(i = 0;i<sizeof(A)/sizeof(A[0]);i++){
cout<<A[i]<<" ";
}


}



时间复杂度都是O(nlogn),空间复杂度是O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值