tensorflow和pytorch的对应函数。

tf.math.square ---------- torch.pow

tf.reduce_sum() ---------torch.sum

tf.boolean_mask ----------torch.masked_select(必须是bool值)

tf.reduce_mean() ---------torch.mean

tf.cast() ---------- x.type() or x.to()

tf.stack() ------------ torch.stack()

在用pytorch训练模型时,通常会在遍历epochs的过程中依次用到optimizer.zero_grad(),loss.backward()optimizer.step()三个函数,如下所示:

for epoch in range(1, epochs):
    for i, (inputs, labels) in enumerate(train_loader):
        output= model(inputs)
        loss = criterion(output, labels)
        
        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序小K

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值