五十道编程小题目 --- 28 八大排序算法 java 之 07归并排序



7. 归并排序(Merge Sort)


基本思想:

归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

归并排序示例:

 


合并方法:

设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为m+1-i 、n+1-m。

  1. j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标
  2. 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束
  3. //选取r[i]和r[j]较小的存入辅助数组rf
    如果r[i]<r[j],rf[k]=r[i]; i++; k++; 转⑵
    否则,rf[k]=r[j]; j++; k++; 转⑵
  4. //将尚未处理完的子表中元素存入rf
    如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
    如果j<=n ,  将r[j…n] 存入rf[k…n] //后一子表非空
  5. 合并结束。
算法代码:(方法一,两个for循环)
public class MergeSort2 {
	
	private static void mergeSort(int[] a) {
		double len = a.length;
		int time = (int)len >> 1; //相当于len/2 ,即归并的趟数

		for(int i=0; i<time; i++){
			int subLength = 1 << i; //相当于2的i次方 ,子序列的长度
			int subNum = (int) Math.ceil(len/((subLength+1)*(i+1))); //子序列数
			for(int j=0; j<subNum; j++){
				int a1_start = (int) (j*2*subLength< len ? j*2*subLength : len-1); //即下一组归并开始索引与上一组相差值
				int a2_start = (int) (a1_start+subLength < len ? a1_start+subLength : len-1);
				int a2_end = (int) ((a1_start+2*subLength-1) < len ? (a1_start+2*subLength-1): len-1); //防止最后一个越界
				
				merge(a, a1_start, a2_start, a2_end);
			}
			System.out.println("-------------归并排序后:-------------");
			print(a);
			System.out.println("************************************");
		}
			
			
	}
	
	//归并函数,传入的参数分别为:原数组,第一个字序列的开始索引,第二个字序列的开始索引,第二个字序列的结束索引
	private static void merge(int[] a, int a1_start, int a2_start, int a2_end){
		
		int len = a.length;
		int[] rf = new int[a2_end-a1_start+1]; 
				
		int i = a1_start, j = a2_start, k = 0;
		while( i<a2_start && j <= a2_end){
			if(a[i]<a[j]){
				rf[k] = a[i];
				i++;
				k++;
			}else{
				rf[k] = a[j];
				j++;
				k++;
			}
		}
		
		while(i<a2_start){
			rf[k] = a[i];
			k++;
			i++;
		}
		
		while(j <= a2_end){
			rf[k] = a[j];
			k++;
			j++;
		}
		
		//拷贝rf数组,到原数组  arraycopy(源数组,源数组开始索引,目标数组,目标数组开始索引,需要拷贝的长度);
		System.arraycopy(rf,0,a,a1_start,rf.length);
		
		print(a);
	}
	
	// 打印数组
		public static void print(int[] arr) {
			for (int i = 0; i < arr.length; i++) {
				System.out.print(arr[i] + " ");
			}
			System.out.println();
		}

		public static void main(String[] args) {

			int a[] = { 49, 38, 65, 97, 76, 13, 27};
			System.out.println("排序前  : ");
			print(a);

			System.out.println("排序  : ");
			mergeSort(a);
			print(a);
			
		}
}
输出结果:
排序前  : 
49 38 65 97 76 13 27 
排序  : 
38 49 65 97 76 13 27 
38 49 65 97 76 13 27 
38 49 65 97 13 76 27 
38 49 65 97 13 76 27 
-------------归并排序后:-------------
38 49 65 97 13 76 27 
************************************
38 49 65 97 13 76 27 
38 49 65 97 13 27 76 
-------------归并排序后:-------------
38 49 65 97 13 27 76 
************************************
13 27 38 49 65 76 97 
-------------归并排序后:-------------
13 27 38 49 65 76 97 
************************************
13 27 38 49 65 76 97 




归并的迭代算法(方法二)


1 个元素的表总是有序的。所以对n 个元素的待排序列,每个元素可看成1 个有序子表。对子表两两合并生成n/2个子表,所得子表除最后一个子表长度可能为1 外,其余子表长度均为2。再进行两两合并,直到生成n 个元素按关键码有序的表。

public class MergeSort {

	// private static long sum = 0;
    /**
     * <pre>
     * 二路归并
     * 原理:将两个有序表合并和一个有序表
     * </pre>
     * 
     * @param a
     * @param s
     * 第一个有序表的起始下标
     * @param m
     * 第二个有序表的起始下标
     * @param t
     * 第二个有序表的结束小标
     * 
     */
    private static void merge(int[] a, int s, int m, int t) {
        int[] tmp = new int[t - s + 1];
        int i = s, j = m, k = 0;
        while (i < m && j <= t) {
            if (a[i] <= a[j]) {
                tmp[k] = a[i];
                k++;
                i++;
            } else {
                tmp[k] = a[j];
                j++;
                k++;
            }
        }
        while (i < m) {
            tmp[k] = a[i];
            i++;
            k++;
        }
        while (j <= t) {
            tmp[k] = a[j];
            j++;
            k++;
        }
        System.arraycopy(tmp, 0, a, s, tmp.length);
        print(a);
        
    }
    /**
     * 
     * @param a
     * @param s
     * @param len
     * 每次归并的有序集合的长度
     */
    public static void mergeSort(int[] a, int s, int len) {
        int size = a.length;
        int mid = size / (len << 1);  // size/(len*2)
        int c = size & ((len << 1) - 1); // 判断数组长度奇偶数
        // -------归并到只剩一个有序集合的时候结束算法-------//
        if (mid == 0)
            return;
        // ------进行一趟归并排序-------//
        for (int i = 0; i < mid; ++i) {
            s = i * 2 * len;
            merge(a, s, s + len, (len << 1) + s - 1);
        }
        // -------将剩下的数和倒数一个有序集合归并-------//
        if (c != 0)
            merge(a, size - c - 2 * len, size - c, size - 1);
        // -------递归执行下一趟归并排序------//
        mergeSort(a, 0, 2 * len);
    }
    
    public static void main(String[] args) {
        int[] a = new int[] {49, 38, 65, 97, 76, 13, 27 };
        mergeSort(a, 0, 1);
        for (int i = 0; i < a.length; ++i) {
            System.out.print(a[i] + " ");
        }
    }
    
 // 打印数组
 	public static void print(int[] arr) {
 		for (int i = 0; i < arr.length; i++) {
 			System.out.print(arr[i] + " ");
 		}
 		System.out.println();
 	}
	
}

输出结果:

38 49 65 97 76 13 27 
38 49 65 97 76 13 27 
38 49 65 97 13 76 27 
38 49 65 97 13 27 76 
38 49 65 97 13 27 76 
13 27 38 49 65 76 97 
13 27 38 49 65 76 97 

7. 归并排序(Merge Sort)


基本思想:

归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

归并排序示例:

 


合并方法:

设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为m+1-i 、n+1-m。

  1. j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标
  2. 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束
  3. //选取r[i]和r[j]较小的存入辅助数组rf
    如果r[i]<r[j],rf[k]=r[i]; i++; k++; 转⑵
    否则,rf[k]=r[j]; j++; k++; 转⑵
  4. //将尚未处理完的子表中元素存入rf
    如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空
    如果j<=n ,  将r[j…n] 存入rf[k…n] //后一子表非空
  5. 合并结束。
算法代码:(方法一,两个for循环)

public class MergeSort2 {
	
	private static void mergeSort(int[] a) {
		double len = a.length;
		int time = (int)len >> 1; //相当于len/2 ,即归并的趟数

		for(int i=0; i<time; i++){
			int subLength = 1 << i; //相当于2的i次方 ,子序列的长度
			int subNum = (int) Math.ceil(len/((subLength+1)*(i+1))); //子序列数
			for(int j=0; j<subNum; j++){
				int a1_start = (int) (j*2*subLength< len ? j*2*subLength : len-1); //即下一组归并开始索引与上一组相差值
				int a2_start = (int) (a1_start+subLength < len ? a1_start+subLength : len-1);
				int a2_end = (int) ((a1_start+2*subLength-1) < len ? (a1_start+2*subLength-1): len-1); //防止最后一个越界
				
				merge(a, a1_start, a2_start, a2_end);
			}
			System.out.println("-------------归并排序后:-------------");
			print(a);
			System.out.println("************************************");
		}
			
			
	}
	
	//归并函数,传入的参数分别为:原数组,第一个字序列的开始索引,第二个字序列的开始索引,第二个字序列的结束索引
	private static void merge(int[] a, int a1_start, int a2_start, int a2_end){
		
		int len = a.length;
		int[] rf = new int[a2_end-a1_start+1]; 
				
		int i = a1_start, j = a2_start, k = 0;
		while( i<a2_start && j <= a2_end){
			if(a[i]<a[j]){
				rf[k] = a[i];
				i++;
				k++;
			}else{
				rf[k] = a[j];
				j++;
				k++;
			}
		}
		
		while(i<a2_start){
			rf[k] = a[i];
			k++;
			i++;
		}
		
		while(j <= a2_end){
			rf[k] = a[j];
			k++;
			j++;
		}
		
		//拷贝rf数组,到原数组  arraycopy(源数组,源数组开始索引,目标数组,目标数组开始索引,需要拷贝的长度);
		System.arraycopy(rf,0,a,a1_start,rf.length);
		
		print(a);
	}
	
	// 打印数组
		public static void print(int[] arr) {
			for (int i = 0; i < arr.length; i++) {
				System.out.print(arr[i] + " ");
			}
			System.out.println();
		}

		public static void main(String[] args) {

			int a[] = { 49, 38, 65, 97, 76, 13, 27};
			System.out.println("排序前  : ");
			print(a);

			System.out.println("排序  : ");
			mergeSort(a);
			print(a);
			
		}
}
输出结果:
排序前  : 
49 38 65 97 76 13 27 
排序  : 
38 49 65 97 76 13 27 
38 49 65 97 76 13 27 
38 49 65 97 13 76 27 
38 49 65 97 13 76 27 
-------------归并排序后:-------------
38 49 65 97 13 76 27 
************************************
38 49 65 97 13 76 27 
38 49 65 97 13 27 76 
-------------归并排序后:-------------
38 49 65 97 13 27 76 
************************************
13 27 38 49 65 76 97 
-------------归并排序后:-------------
13 27 38 49 65 76 97 
************************************
13 27 38 49 65 76 97 




归并的迭代算法(方法二)


1 个元素的表总是有序的。所以对n 个元素的待排序列,每个元素可看成1 个有序子表。对子表两两合并生成n/2个子表,所得子表除最后一个子表长度可能为1 外,其余子表长度均为2。再进行两两合并,直到生成n 个元素按关键码有序的表。

public class MergeSort {

	// private static long sum = 0;
    /**
     * <pre>
     * 二路归并
     * 原理:将两个有序表合并和一个有序表
     * </pre>
     * 
     * @param a
     * @param s
     * 第一个有序表的起始下标
     * @param m
     * 第二个有序表的起始下标
     * @param t
     * 第二个有序表的结束小标
     * 
     */
    private static void merge(int[] a, int s, int m, int t) {
        int[] tmp = new int[t - s + 1];
        int i = s, j = m, k = 0;
        while (i < m && j <= t) {
            if (a[i] <= a[j]) {
                tmp[k] = a[i];
                k++;
                i++;
            } else {
                tmp[k] = a[j];
                j++;
                k++;
            }
        }
        while (i < m) {
            tmp[k] = a[i];
            i++;
            k++;
        }
        while (j <= t) {
            tmp[k] = a[j];
            j++;
            k++;
        }
        System.arraycopy(tmp, 0, a, s, tmp.length);
        print(a);
        
    }
    /**
     * 
     * @param a
     * @param s
     * @param len
     * 每次归并的有序集合的长度
     */
    public static void mergeSort(int[] a, int s, int len) {
        int size = a.length;
        int mid = size / (len << 1);  // size/(len*2)
        int c = size & ((len << 1) - 1); // 判断数组长度奇偶数
        // -------归并到只剩一个有序集合的时候结束算法-------//
        if (mid == 0)
            return;
        // ------进行一趟归并排序-------//
        for (int i = 0; i < mid; ++i) {
            s = i * 2 * len;
            merge(a, s, s + len, (len << 1) + s - 1);
        }
        // -------将剩下的数和倒数一个有序集合归并-------//
        if (c != 0)
            merge(a, size - c - 2 * len, size - c, size - 1);
        // -------递归执行下一趟归并排序------//
        mergeSort(a, 0, 2 * len);
    }
    
    public static void main(String[] args) {
        int[] a = new int[] {49, 38, 65, 97, 76, 13, 27 };
        mergeSort(a, 0, 1);
        for (int i = 0; i < a.length; ++i) {
            System.out.print(a[i] + " ");
        }
    }
    
 // 打印数组
 	public static void print(int[] arr) {
 		for (int i = 0; i < arr.length; i++) {
 			System.out.print(arr[i] + " ");
 		}
 		System.out.println();
 	}
	
}

输出结果:

38 49 65 97 76 13 27 
38 49 65 97 76 13 27 
38 49 65 97 13 76 27 
38 49 65 97 13 27 76 
38 49 65 97 13 27 76 
13 27 38 49 65 76 97 
13 27 38 49 65 76 97 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值