论文解读:ProteinBERT: a universal deep-learning model of protein sequence and function
目录1. 研究背景2. 研究数据2.1 预训练的蛋白质数据集2.2 蛋白质基准数据集3. 研究方法3.1 序列和标注编码3.2 蛋白质序列和注释的自我监督预训练3.3 对蛋白质基准进行监督微调3.4 深度学习框架4. 结果4.1 预训练可以改善蛋白质模型4.2 ProteinBERT在不同的蛋白质基准上达到了近乎最先进的结果4.4 全局注意力机制的理解5. 结论作者单位:耶路撒冷希伯来大学发表期刊:《Bioinformatics》,2020年期刊影响因子:6.937发表时间:2022年1月9日数据和



