from http://www.sqlparty.com/hive%E8%AF%BB%E5%8F%96flume%E6%AD%A3%E5%9C%A8%E5%86%99%E5%85%A5%E7%9A%84hdfs%E4%B8%B4%E6%97%B6%E6%96%87%E4%BB%B6%E6%89%80%E9%81%87%E5%88%B0%E7%9A%84%E9%97%AE%E9%A2%98/
实际工作遇到如下场景:应用服务器收集到的日志信息,通过Flume写入到HDFS指定目录,而Hive将其映射到表,进行离线统计。
计划
计划方式处理:
Hive的表创建为外部分区表,例如:
USE mydb;
CREATE EXTERNAL TABLE mytable
(
c1 String,
c2 INT,
c3 INT,
create_time String
)
PARTITIONED BY (dt STRING);
然后创建分区,如:
ALTER TABLE mytable ADD PARTITION (dt = ’2013-09-25′) LOCATION ‘/data/mytable/2013-09-25/’;
ALTER TABLE mytable ADD PARTITION (dt = ’2013-09-26′) LOCATION ‘/data/mytable/2013-09-26/’;
ALTER TABLE mytable ADD PARTITION (dt = ’2013-09-27′) LOCATION ‘/data/mytable/2013-09-27/’;
即Hive的表按天进行分区。指定到相应目录。
而Flume中配置将数据保存到HDFS中,即HDFS sink。计划每天一个文件,进行日切。如2013-09-25对应的文件就保存在:
hdfs://<hive.metastore.warehouse.dir>/data/mytable/2013-09-25/FlumeData.xxx
这样,只要文件生成,就能直接通过操作Hive的mytable表来对文件进行统计了。
业务上要求统计工作是按照小时进行,考虑到按照小时进行分区过于细化,而且会导致过多的文件给NameNode造成内存压力,所以如上Hive层面按天进行划分。
统计执行时首先指定天分区,然后根据create_time(mm:hh:ss)指定统计时间段,如:
SELECT c1,
SUM(c2),
SUM(c3)
FROM mytable
WHERE dt = ’2013-09-25′
AND create_time BETWEEN ’22:00:00′ AND ’22:59:59′
GROUP BY c1
;
但是,但是,计划始终赶不到遇到的变化!
在实践的过程中遇到如下两个问题:
1.对于正在写入的文件,通过hadoop fs -ls 命令查看,其大小始终是0,即使通过hadoop fs -cat可以看到实际已经有内容存在!通过hive处理的话也看不到其中的数据。
2.Flume正在写入的文件,默认会有.tmp后缀。如果Hive在执行过程中,Flume切换文件,即将xxx.tmp重命名为xxx,这时Hive会报错如file not found xxx.tmp。
了解一番后大致知道了缘由,记录如下:
针对问题1
首先了解HDFS的特点:
HDFS中所有文件都是由块BLOCK组成,默认块大小为64MB。在我们的测试中由于数据量小,始终在写入文件的第一个BLOCK。而HDFS与一般的POSIX要求的文件系统不太一样,其文件数据的可见性是这样的:
- 如果创建了文件,这个文件可以立即可见;
- 写入文件的数据则不被保证可见了,哪怕是执行了刷新操作(flush/sync)。只有数据量大于1个BLOCK时,第一个BLOCK的数据才会被看到,后续的BLOCK也同样的特性。正在写入的BLOCK始终不会被其他用户看到!
- HDFS中的sync()保证数据持久化到了datanode上,然后可以被其他用户看到。
针对HDFS的特点,可以解释问题1中的现象,正在写入无法查看。但是使用Hive统计时Flume还在写入那个BLOCK(数据量小的时候),那岂不是统计不到信息?
解决方案:
每天再按小时切分文件——这样虽然每天文件较多,但是能够保证统计时数据可见!Flume上的配置项为hdfs.rollInterval。
如果文件数多,那么还可以考虑对以前的每天的小时文件合并为每天一个文件!
针对问题2
原因比较明显,Hive处理前获取了对应分区下的所有文件信息,其中包含xxx.tmp文件,而传递给MapReduce处理时,由于Flume进行了切换,导致原来的xxx.tmp变成了xxx,新的.tmp名称又变成了yyy.tmp,这样自然找不到xxx.tmp了。
解决方案:
解决这个问题想法之一是想控制Hive的处理时机,但是显然不是那么好控制。
进一步了解到HDFS的Java API读取HDFS文件时,会忽略以”.”和”_”开头的文件!类似于Linux中默认.xx是隐藏的一样,应用程序读取HDFS文件时默认也不读取.xxx和_xxx这样名称的文件!
这样就产生了针对问题2的处理方案一)配置Flume,针对正在写入的文件,以.号开头。涉及Flume配置项hdfs.inUsePrefix。
也有网友给出了处理方案二):让应用程序也看不到.tmp结尾的文件!方法是继承PathFilter自定义自己的文件筛选类,然后在Hive中设置使用这个类。具体如下(转自此文)
package com.twitter.util;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
public class FileFilterExcludeTmpFiles implements PathFilter {
public boolean accept(Path p) {
String name = p.getName();
return !name.startsWith(“_”) && !name.startsWith(“.”) && !name.endsWith(“.tmp”);
}
}
然后在hive-site.xml中加入:
<property>
<name>hive.aux.jars.path</name>
<value>file:///usr/lib/hadoop/hive-serdes-1.0-SNAPSHOT.jar,file:///usr/lib/hadoop/TwitterUtil.jar</value>
</property>
<property>
<name>mapred.input.pathFilter.class</name>
<value>com.twitter.util.FileFilterExcludeTmpFiles</value>
</property>
Done!
参考:
http://grokbase.com/t/cloudera/cdh-user/12b9htpqyw/flume-hive-realtime-problem-with-temporary-files
http://flume.apache.org/FlumeUserGuide.html#hdfs-sink
《Hadoop权威指南》