给出N个无序的数,然后找出其中最大的k个数

解题思路:
         首先测试数据有可能会有一亿个数,数据量特别的大,数据库不可能存储这么多的数据。如果直接sort排序,NlogN时间复杂度实在是太高,大于10^9。我们可以考虑对数据进行分块读取,每次读取的数据块大小应大于k。
         不如先假设第一次读取的数据块前k个数最大,然后把k个数建成最小二叉堆。然后从第k+1个数开始,每个数都与堆顶的数值进行比较,如果数字i大于堆顶则把堆顶的元素的元素替换成i,再调整一次堆。最后读取完数据之后,这个二叉堆里面的元素就是从小到大排序好的最大k个数。
时间复杂度:O(NlogK)
空间复杂度:O(K)
证明过程:
         为什么求最大的k个用的不是最大堆,而是最小堆?最大堆堆顶的元素是最大的,往下的子树越来越小,把N个数建成最大堆,那么堆顶往下的k个数就是最大的k个数。但是时间复杂度O(NlogN)和空间复杂度O(N)太高!
         排序时间复杂度很高,是因为进行了很多没有用的判断,我们只需要取最大的k个数,而排序则把N个数都从小到大排序好了。建立一个k个数的最小堆,假设堆里面的元素是最大的,当然只是假设。如果从M+1到N这些数只要有数大于最小堆堆顶的数,那么假设就不成立,堆顶那个数就不符合,自然把它去掉,把新的数加进来,再重新调整堆,使得堆顶的元素最小。
         为什么要用最小堆呢?因为每次查找这k个数里面的最小的那个数就是堆顶,时间复杂度是O(1)。如果直接用数组来存储这k个数,虽然查找的时间复杂度是logN,但是当把这个数插入数组的时候,数组比它小其他元素还需要往前平移,所以时间复杂度远远大于logN。由于每次调整堆的时间复杂度是logN。所以最小堆的做法的时间复杂度是
O(NlogK),而空间复杂度只有O(K)。
 
代码1 C++的STL库优先队列实现二叉堆:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
struct cmp{
   bool operator ()(int a,int b)
   {
       return a>b;
   }
};
#define MAX 11000
int a[MAX];
using namespace std;
priority_queue<int,vector<int>,cmp>q;
int main()
{
   int n,i,k,m,top;
   scanf("%d%d",&n,&m);
     for(i=1;i<=n;i++)
     {
          scanf("%d",&k);
          if(i<=m) //前m个数入 队列
          {
               q.push(k);
               if(i==m) //纪录前m个数中最小的数
                    top=q.top();
          }
          else
          {
               if(k>top) //如果新加入的数大于队列中最小的数则出队
               {
                    q.pop();
                    q.push(k);
                    top=q.top();
               }
          }
     }
     k=0;
     while(!q.empty()) //这样处理是为了最后一个数打印时没有空格
     {
          a[k++]=q.top();
          q.pop();
     }
     for(i=0;i<k;i++)
     {
          printf("%d",a[i]);
          if(i==k-1)
               printf("\n");
          else
               printf(" ");
     }
   return 0;
}
代码2 (数组实现堆):
#include <stdio.h>
#define MAX 10001
int a[MAX];
void HeapAdjust(int R[],int s,int t) //筛选函数1
{
   int i,j,temp;
   temp=R[s];
   i=s;
   for(j=2*i;j<=t;j=2*j)
   {
       if(j<t&&R[j]<R[j+1])
           j++;
       if(temp>R[j]) break;
       R[i]=R[j];
       i=j;
   }
   R[i]=temp;
}

void HeapSort(int R[],int n) //堆排
{
   int i;
   for(i=n/2;i>0;i--)
   {
       HeapAdjust(R,i,n);
   }
   for(i=n;i>1;i--)
   {
       R[1]^=R[i];
       R[i]^=R[1];
       R[1]^=R[i];
       HeapAdjust(R,1,i-1);
   }
}

void HeapAdjust2(int R[],int s,int t) //筛选函数2
{
   int i,j,temp;
   temp=R[s];
   i=s;
   for(j=2*i;j<=t;j=2*j)
   {
       if(j<t&&R[j]>R[j+1])
           j++;
       if(temp<R[j]) break; //找到比新加入的元素还大的根节点
       R[i]=R[j];
       i=j;
   }
   R[i]=temp;
}

int main()
{
   int i,k,n,m;
   scanf("%d%d",&n,&m);
   for(i=1;i<=m;i++)
   {
       scanf("%d",&a[i]);
   }
   HeapSort(a,m);
   for(i=m+1;i<=n;i++)
   {
       scanf("%d",&k);
       if(k>a[1]) //新元素大于堆中最小元素则加入堆
       {
           a[1]=k;
           HeapAdjust2(a,1,m); //从根节点开始重新筛选一次
       }
   }
   HeapSort(a,m);
   for(i=1;i<=m;i++)
   {
       printf("%d",a[i]);
       if(i==m)
           printf("\n");
       else
           printf(" ");
   }
   return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值