ES 索引改名

在Elasticsearch中,直接重命名索引并不是一个直接支持的操作。但是,可以通过以下步骤间接实现索引的重命名:

  1. 创建新索引:首先,你需要创建一个新的索引,这个索引将是你原索引的新名字。

  2. 复制数据:使用Reindex API将数据从旧索引复制到新索引。

  3. 删除旧索引:确认新索引创建成功并验证数据完整后,可以安全地删除旧索引。

  4. 更新应用配置:最后,确保你的应用程序或其他依赖于这个索引的服务指向新的索引名称。

以下是如何使用Curl命令执行上述步骤的示例:

创建新索引

 

Bash

PUT /new_index_name
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  }
}

复制数据

 

Bash

POST _reindex
{
  "source": {
    "index": "old_index_name"
  },
  "dest": {
    "index": "new_index_name"
  }
}

删除旧索引

 

Bash

1DELETE /old_index_name

请注意,这些操作应该在低峰时段执行,以减少对生产环境的影响。同时,在删除旧索引之前,一定要确保新索引中的数据完整无误。

此外,Elasticsearch 7.10及以上版本提供了_migrate API,可以更方便地进行索引的重命名和迁移,但具体的使用方法和注意事项需要参考官方文档。不过,截至我最后一次更新知识(2023年初),直接的索引重命名API并未在文档中提及,因此以上方法仍然适用。

-----------------------------------------------------------------

备份流程

PUT /content_erp_nlp_help_back
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  }
}

POST _reindex
{
  "source": {
    "index": "content_erp_nlp_help"
  },
  "dest": {
    "index": "content_erp_nlp_help_back"
  }
}

DELETE /content_erp_nlp_help



DELETE /content_erp_nlp_help

PUT /content_erp_nlp_help

PUT _template/content_erp_nlp_help
{
  "index_patterns": [
    "content_vector*"
  ],
  "settings": {
    "analysis": {
      "analyzer": {
        "my_ik_analyzer": {
          "type": "ik_smart"
        }
      }
    },
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "content": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "content_vector": {
        "type": "dense_vector",
        "similarity": "cosine",
        "index": true,
        "dims": 768,
        "element_type": "float",
        "index_options": {
          "type": "hnsw",
          "m": 16,
          "ef_construction": 128
        }
      },
      "content_answer": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "title": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "param": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "type": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "questionId": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "createTime": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "updateTime": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "hitCount": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "answerPattern": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "nearQuestionVOList": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "questionEnclosureVOList": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "questionRelationVOList": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      },
      "rmsRoutingAnswerVos": {
        "type": "text",
        "analyzer": "ik_max_word",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

POST _reindex
{
  "source": {
    "index": "content_erp_nlp_help_test"
  },
  "dest": {
    "index": "content_erp_nlp_help"
  }
}

### Spring Boot 中实现 Elasticsearch 动态索引切换 在 Spring Boot 项目中与 Elasticsearch 进行集成并实现实时动态引用不同索引的功能,主要涉及配置文件设置、实体类定义以及服务层逻辑编写。 #### 配置依赖项 为了使应用程序能够访问 Elasticsearch 并执行相应操作,需先引入必要的 Maven 或 Gradle 依赖。具体来说,在 `pom.xml` 文件内添加如下所示的依赖条目[^4]: ```xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency> ``` #### 定义实体映射关系 创建一个 Java 类来表示要存储于 Elasticsearch 中的对象模型,并通过注解指定其字段对应数据库中的属性。这里可以利用 `@Document` 注解指明该对象所属的具体索引名称;如果希望支持动态变化,则可以通过 SpEL 表达式注入外部变量作为参数传递给此注解: ```java import org.springframework.data.annotation.Id; import org.springframework.data.elasticsearch.annotations.Document; @Document(indexName = "#{T(com.example.config.IndexConfig).getIndex()}") public class MyEntity { @Id private String id; // Other fields and methods... } ``` 上述代码片段展示了如何借助 SpEL 来让 `indexName` 属性接受来自其他 Bean 的返回值作为实际使用的索引名字[^1]。 #### 编写自定义配置类 为了让上面提到的方法生效,还需要有一个专门负责提供当前所需索引名的服务组件。这通常意味着要在应用启动期间初始化好默认值,并允许运行过程中根据业务需求灵活调整它所指向的目标资源: ```java package com.example.config; @Component public class IndexConfig { public static final String DEFAULT_INDEX_NAME = "default-index"; private volatile String currentIdx = DEFAULT_INDEX_NAME; /** * 获取当前正在使用的索引名称. */ public synchronized String getIndex(){ return this.currentIdx; } /** * 更新为新的目标索引. * * @param newIndex 新的索引名称 */ public void setIndex(String newIndex){ this.currentIdx=newIndex; } } ``` 这段程序实现了简单的线程安全机制以确保多处并发调用不会引发竞态条件问题。同时提供了同步修改全局状态的能力以便随时改变工作区内的数据集位置[^3]。 #### 使用 Repository 接口简化 CRUD 操作 最后一步就是基于前面准备好的基础设施构建出易于扩展维护的操作接口了。Spring Data 提供了一套标准的方式来快速搭建起一套完整的持久化框架——只需继承特定基类即可获得一系列常用函数的支持而无需手动编码实现细节部分: ```java @Repository public interface MyEntityRepository extends ElasticsearchRepository<MyEntity, String> {} ``` 有了这样一个模板化的 DAO 对象之后就可以很方便地完成增删改查等一系列动作而不必关心底层连接池管理等问题了[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值