内嵌数据结构
记得中英文对照,有些面试官喜欢秀英文or中文
列表list:
最常用,可变列表,有sort可排序
如果是列表和列表之间的加法,返回的是重新申请的一个对象,和加法的两个对象不一样
list可以做stack,queue用,活学活用下,pop等
需要和元组做区别
字典dict:
最常用,key,value的形式,无顺序。和json之间的转换
集合set:
常用,元素不重复,可以作为去重。
list(set(list))
元组tuple:
和数组相似的列表,不可改变,可以用在相关函数传参,不希望传参被改变。
collections容器:
提供一些更高级一些的数据结构,如排序的字典
匿名函数
lambda args:ret
输入和输出值,配合filter,map,reduce等使用味道佳。lambda和一些显性的函数,我个人觉得差别不大,但是他比较轻便,不用再去纠结于函数名怎么取这种问题了。
def add(x, y):
return x + y
add = lambda x, y:x + y
filter
filter是一个过滤器,主要针对一个iteration的数据结构进行操作,比如list,dict等,过滤过滤,顾名思义就是将需要的或者不需要的内容过滤出来或者除去。
filter一共两个参数,一个是函数,一个是数组,将数组的每个元素传入函数,根据函数的返回值确定元素是否加入新数组。
filter(lambda x:x > 1, [-1, 1, 2, 3, 4])
[2, 3, 4]
map
map和filter相辅相成,map和filter的用法相似,但是功能却不同,map是将一个iteration的数据结构的元素全部映射到func处理后的数组上。比如,将[1, 2, 3, 4]数组每个元素平方的数组返回。两种做法
origin_list = [1, 2, 3, 4]
# 数组方式
pow2_list = [item * item for item in origin_list]
# map方式
pow2_list_2 = map(lambda x:x*x, origin_list)
举个例子,filter和map的例子,如何将一个文件路径列表中开头为master的路径加上branch
paths = [
r"master/2019-01-02/res/action/1.png",
r"trunk/2019-01-02/res/action/1.png",
r"trunk/2019-01-02/res/action/2.png",
r"master/2019-01-02/res/action/3.png",
r"master/2019-01-02/res/action/4.png",
]
target_paths = map(
lambda p:"branch" + p,
filter(lambda p:p.startswith("master"), paths)
)
reduce
reduce也一样,第一个参数是函数,第二个是数组,reduce函数将数组的数据用第一个函数做累计计算
比如计算,数组的累加和
nums = [1, 2, 3, 4, 5]
reduce(lambda x,y:x + y, nums)
函数的__doc__属性
def fun():
'''__doc__'''
pass
json下将中文写入
import json
import sys
print sys.getdefaultencoding()
这个是UTF-8,也就是windows下环境是UTF-8
写入的时候,可以使用dumps
json.dumps(ret,encoding='utf-8',ensure_ascii=False)
根据文件路径,获取最后的文件名
import os
local_filename = "/root/path/treee"
filename = os.path.split(local_filename)[1]
print(filename)