题目描述:
在一个 N x N 的坐标方格 grid 中,每一个方格的值 grid[i][j] 表示在位置 (i,j) 的平台高度。
现在开始下雨了。当时间为 t 时,此时雨水导致水池中任意位置的水位为 t 。你可以从一个平台游向四周相邻的任意一个平台,但是前提是此时水位必须同时淹没这两个平台。假定你可以瞬间移动无限距离,也就是默认在方格内部游动是不耗时的。当然,在你游泳的时候你必须待在坐标方格里面。
你从坐标方格的左上平台 (0,0) 出发。最少耗时多久你才能到达坐标方格的右下平台 (N-1, N-1)?
示例 1:
输入: [[0,2],[1,3]]
输出: 3
解释:
时间为0时,你位于坐标方格的位置为 (0, 0)。
此时你不能游向任意方向,因为四个相邻方向平台的高度都大于当前时间为 0 时的水位。
等时间到达 3 时,你才可以游向平台 (1, 1). 因为此时的水位是 3,坐标方格中的平台没有比水位 3 更高的,所以你可以游向坐标方格中的任意位置
示例2:
输入: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
输出: 16
解释:
0 1 2 3 4
24 23 22 21 5
12 13 14 15 16
11 17 18 19 20
10 9 8 7 6
最终的路线用加粗进行了标记。
我们必须等到时间为 16,此时才能保证平台 (0, 0) 和 (4, 4) 是连通的
提示:
2 <= N <= 50.
grid[i][j] 是 [0, ..., N*N - 1] 的排列。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/swim-in-rising-water
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解答:
int directions[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
bool check(int** grid, int gridSize, int threshold) {
if (grid[0][0] > threshold) {
return false;
}
int visited[gridSize][gridSize];
memset(visited, 0, sizeof(visited));
visited[0][0] = 1;
int q[gridSize * gridSize][2];
int left = 0, right = 0;
q[right][0] = 0, q[right++][1] = 0;
while (left < right) {
int i = q[left][0], j = q[left++][1];
for (int k = 0; k < 4; k++) {
int ni = i + directions[k][0], nj = j + directions[k][1];
if (ni >= 0 && ni < gridSize && nj >= 0 && nj < gridSize) {
if (visited[ni][nj] == 0 && grid[ni][nj] <= threshold) {
q[right][0] = ni, q[right++][1] = nj;
visited[ni][nj] = 1;
}
}
}
}
return visited[gridSize - 1][gridSize - 1] == 1;
}
int swimInWater(int** grid, int gridSize, int* gridColSize) {
int left = 0, right = gridSize * gridSize - 1;
while (left < right) {
int mid = (left + right) >> 1;
if (check(grid, gridSize, mid)) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
运行结果:
Notes:
参考官方文档:https://leetcode-cn.com/problems/swim-in-rising-water/solution/shui-wei-shang-sheng-de-yong-chi-zhong-y-xm9i/