leetcode:剑指 Offer 30. 包含 min 函数的栈(C++)

本文介绍了如何设计一个数据结构,实现栈的同时保持最小元素的快速访问。通过维护两个栈A和B,B栈仅存储当前最小值,从而在push、pop和min操作时都能保持时间复杂度为O(1)。适合学习栈和数据结构优化问题。
摘要由CSDN通过智能技术生成

题目描述:
定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的 min 函数在该栈中,调用 min、push 及 pop 的时间复杂度都是 O(1)。

示例:

MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.min(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.min(); --> 返回 -2.

提示:

各函数的调用总次数不超过 20000 次

作者:Krahets
链接:https://leetcode-cn.com/leetbook/read/illustration-of-algorithm/50bp33/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
解答:

class MinStack {
public:
    /** initialize your data structure here. */
    stack<int> A,B;
    MinStack() {
        
    }
    
    void push(int x) {
        A.push(x);
        if(B.empty() || B.top() >= x)
            B.push(x);
    }
    
    void pop() {
        if(A.top() == B.top())
            B.pop();
        A.pop();
    }
    
    int top() {
        return A.top();
    }
    
    int min() {
        return B.top();
    }
};

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack* obj = new MinStack();
 * obj->push(x);
 * obj->pop();
 * int param_3 = obj->top();
 * int param_4 = obj->min();
 */

运行结果:
在这里插入图片描述
Notes:
设计两个栈AB,一个栈A正常存储,另一个B只将最小值push进去(若B.top()大于新入A栈的值x,则将x push到栈B,这样每次B.top()都是最小值)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值