hdu3949-高斯消元法的应用

题意:  给N个数,从中至少选取1个数的异或值,问第K小的是多少?

用高斯消元法搞基。将N个数化为二进制,求出非线性相关的基。


因为要求最小,则从高位开始消去。


#include<stdio.h>
#include<string.h>
#include<math.h>
#define LL long long
#define M 63
#define maxN 100000
#include<algorithm>
using namespace std;

int N;
LL a[maxN+10];
LL d[65];
int tot;
int ok;

void guass()
{
    int j=1;
    for (int i=M-1;i>=0;i--)
    {
        int k;
        for (k=j;k<=N;k++)
            if ((a[k]>>i)&1)
                break;
        if (k==N+1)
            continue;
        swap(a[k],a[j]);
        for (k=1;k<=N;k++)
        {
            if (k!=j && (a[k]>>i)&1)
                a[k] ^= a[j];
        }
        j++;
    }
    tot = j-1;
    if (j==N+1)
        ok = 0;
    else
        ok = 1;

 //   for (int i=1;i<=tot;i++)
    //    printf("%I64d ",a[i]);
   // printf("\n");
    return ;
}
void solve()
{
    int Q;
    scanf("%d",&Q);
    while (Q--)
    {
        LL n;
        scanf("%I64d",&n);
        if (ok)
            n--;
        if (n>=d[tot+1])
        {
            printf("-1\n");
            continue;
        }
        LL rr = 0;
        for (int i=tot;i>=1;i--)
        {
            if (n&1)
               rr ^= a[i];
            n >>= 1;
        }
        printf("%I64d\n",rr);
    }
    return ;
}
int main()
{
    d[1]=1;
    for (int i=2;i<=63;i++)
        d[i]=d[i-1]*2;

    int cas,cast= 0;
    scanf("%d",&cas);
    while (cas--)
    {
        scanf("%d",&N);
        for (int i=1;i<=N;i++)
            scanf("%I64d",&a[i]);
        printf("Case #%d:\n",++cast);
        guass();
        solve();
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值