给定N个正整数,求不能由它们的和组成的最小的正整数是多少?
按照从小到大排序
数学归纳法,假设当前i个数能组成的数的区间为1..S,则对于第i+1个数,如果Ai+1<=S+1,则前i+1个数能组成的数区间为1...S+Ai+1,否则,S+1没法由前i+1个数组成,因为是递增序列,可知S+1便是最小的不能组成的数。
此题也可以DP,每个阶段状态为N*MAX,N个阶段。状态空间都承受不了。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
int p[10010];
int n;
int main()
{
while (scanf("%d",&n)==1)
{
for (int i=1;i<=n;i++)
scanf("%d",&p[i]);
sort(p+1,p+n+1);
int sum = 0;
for (int i=1;i<=n;i++)
{
if (p[i]<=sum+1)
{
sum += p[i];
}
else
{
break;
}
}
printf("%d\n",sum+1);
}
return 0;
}