C++中控制浮点数精度函数setprecision使用方法

函数原型:
setprecision(streamsize _Prec);
功能:
使用setprecision(n)可控制输出流显示浮点数的数字个数。C++默认的流输出数值有效位是6
参数:
streamsize _Prec 浮点数的精度
返回值:
The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.precision(_Prec), and then returns str.
要求:
Header: <iomanip>

Namespace: std


#include <iostream>
#include <iomanip> //格式控制
using namespace std;

int main()
{
    double  PI= 3.141592653;
    cout<<"when default PI= "<<PI<<endl; //(1)
    for(int i=0;i<13;i++)
    {
        cout<<"when setprecision("<<i<<") PI= "<<setprecision(i) <<PI<<endl;
    }
}
/**********************
when default PI= 3.14159
when setprecision(0) PI= 3
when setprecision(1) PI= 3
when setprecision(2) PI= 3.1
when setprecision(3) PI= 3.14
when setprecision(4) PI= 3.142
when setprecision(5) PI= 3.1416
when setprecision(6) PI= 3.14159
when setprecision(7) PI= 3.141593
when setprecision(8) PI= 3.1415927
when setprecision(9) PI= 3.14159265
when setprecision(10) PI= 3.141592653
when setprecision(11) PI= 3.141592653
when setprecision(12) PI= 3.141592653

Process returned 0 (0x0)   execution time : 0.062 s
Press any key to continue.

*********************/



数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值