elasticsearch 处理空值
源地址
考虑前面的例子,其中文档有一个称为 tags
的字段。这是一个多值字段。文档可以有一个、多个或者没有标签。如果字段没有值,那么它是怎么在倒排索引中存储的呢?
这个问题真诡异,因为答案是,它并没有被存储。让我们看一下上一节提到的倒排索引:
Token | DocIDs |
---|---|
open_source | 2 |
search | 1,2 |
如何存储一个在那个数据结构中不存在的字段呢?压根不行!倒排索引是一系列 token 和包含它的文档的列表。如果字段不存在,那也不会保存任何 token,所以在倒排索引中也不会有任何表示。
最终,这意味着 null
、[]
和 [null]
都是等价的。都不存在于倒排索引中!
很显然,真实世界没有这么简单,数据的字段经常会丢失或者包含显式的 null
或者空数组。为了解决这些问题,elasticsearch 有一些工具来处理空值或者丢失的数据。
exists Filter
exists
过滤器是第一件武器。这个过滤器返回特定字段中拥有任何值的文档。让我们使用 tagging 的例子,索引几个样本文档:
POST /my_index/posts/_bulk
{ "index": { "_id": "1" }}
{ "tags" : ["search"] } ...(1)
{ "index": { "_id": "2" }}
{ "tags" : ["search", "open_source"] } ...(2)
{ "index": { "_id": "3" }}
{ "other_field" : "some data" } ...(3)
{ "index": { "_id": "4" }}
{ "tags" : null } ...(4)
{ "index": { "_id": "5" }}
{ "tags" : ["search", null] } ...(5)
- (1)
tags
字段有一个值 - (2)
tags
字段有两个值 - (3)
tags
字段丢失 - (4)
tags
字段设置为null
- (5)
tag
字段有一个值和一个null
最终的倒排索引就是:
Token | DocIDs |
---|---|
open_source | 2 |
search | 1,2,5 |
我们的目标是找到设置了 tag 的所有文档。不管是 tag 是什么,只要它出现在文档中。在 SQL 中,我们通常可以使用 IS NOT NULL
查询:
SELECT tags
FROM posts
WHERE tags IS NOT NULL
在 elasticsearch 中,我们就使用 exists
过滤器:
GET /my_index/posts/_search
{
"query" : {
"filtered" : {
"filter" : {
"exists" : { "field" : "tags" }}}}}
最后返回三个文档:
"hits" : [
{
"_id" : "1",
"_score" : 1.0,
"_source" : { "tags" : ["search"] }
},
{
"_id" : "5",
"_score" : 1.0,
"_source" : { "tags" : ["search", null] } ...(1)
},
{
"_id" : "2",
"_score" : 1.0,
"_source" : { "tags" : ["search", "open source"] }
}
]
- (1) 文档 5 即使包含
null
值也返回了。因为真实值的 tag 被索引了,所以这个字段存在。所以null
对过滤器没有影响。
结果很容易理解。任何在 tags
字段中有 term 的文档都作为命中结果返回了。被排除在外的两个文档就是 3 和 4。
missing 过滤器
missing
过滤器本质上是 exists
的逆:它返回对应一个特定的字段没有任何值的文档,就像 SQL:
SELECT tags
FROM posts
WHERE tags IS NULL
让我们用 missing
来替换上面例子中 exists
过滤器:
GET /my_index/posts/_search
{
"query" : {
"filtered" : {
"filter": {
"missing" : { "field" : "tags" }
}
}
}
}
正如你所期望的,我们拿到了在 tags
字段上没有真实值的文档——文档 3 和 4:
"hits" : [
{
"_id" : "3",
"_score" : 1.0,
"_source" : { "other_field" : "some data" }
},
{
"_id" : "4",
"_score" : 1.0,
"_source" : { "tags" : null }
}
]
在 null 表示 null 时
有时候你需要能够区分字段没有值和字段被显式地设置为
null
。根据我们前面看到的默认行为,这是不可能的;数据丢失了。幸运的是,还有一种方法我们可以用一个占位符来替换显式的null
。
当指定一个 string、numeric、Boolean 或者日期字段时,你同样能设置null_value
可以用在任何遇到显式的null
值的地方。没有一个值的字段显然可以从倒排索引中排除。
选择合适的null_value
,确保下面的事项:
- 匹配了字段的类型(type)。你不能在一个类型为
date
的字段上用一个 string 的null_value
- 不同于字段可能包含的正常值,来避免出令人困惑的出现
null
的真实值
exists/missing on Objects
exists/missing 过滤器同样可以用在内部对象上(inner objects),不仅仅核心类型(core types)。假如有下面的文档
{
"name" : {
"first" : "John",
"last" : "Smith"
}
}
你可以检查 name.first
和 name.last
不仅仅是 name
的存在。然而,在Types and Mappings中,我们提到对象在内部会进行平化展开成一个简单的字段值结构,像这样:
{
"name.first" : "John",
"name.last" : "Smith"
}
所以,我们如何在 name
字段上使用 exists
和 missing
过滤器,这实际上并不存在于倒排索引中?
其原因就是,这会按照如下的过滤器那样:
{ "exists" : { "field" : "name" }}
实际上是按照:
{
"bool": {
"should": [
{ "exists": { "field": { "name.first" }}},
{ "exists": { "field": { "name.last" }}}
]
}
}
执行的。
这样也意味着如果 first
和 last
同时是空,name
命名空间就不会存在。