编程总结
每每刷完一道题后,其思想和精妙之处没有地方记录,本篇博客用以记录刷题过程中的遇到的算法和技巧
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
思路:此题是非常经典的二分查找题目,需要重点掌握:
二分查找:
int search(int *nums, int numsSize, int target)
{
int l = 0; // low
int h = numsSize - 1; // high
int m = 0; // medium
while (l <= h)
{
m = l + (h - l) / 2; // 手法1:m 的处理
if (target > nums[m]) {
l = m + 1; // 手法2:l 的处理
}
else if (target < nums[m])
{
h = m - 1; // 手法3:h 的处理
}
else if (target == nums[m])
{
return m;
}
}
return -1; // 没有找到该元素,返回-1.
}
278. 第一个错误的版本
思路是先找到第一个出错的版本,即 isBadVersion == true. 然后找它的下一个 false 即为所求。,但效率有点低,特别对于第一次如果找到的 true 比较靠前,将多走很多步才能找到下一个 false 的下标。
// 法1:效率不高,但能通过
int firstBadVersion(int n)
{
int l = 0; // low
int h = n - 1; // high
int m = 0; // medium
int trueFlag = 0;
while (l <= h)
{
m = l + (h - l) / 2;
if (isBadVersion(m) == false) {
l = m + 1;
}
else if (isBadVersion(m) == true)
{
h = m - 1;
break;
}
}
// 找到第一个 true 后,遍历得到第一个 false 的元素即为 第一个错误起始位置。
while (m >= 0 && (isBadVersion(m) == true)) {
m--;
}
return (m + 1);
}
法2效率高很多,通过不断收缩边界来做,当不满足while的(l <= h)时,l的下标即是所求解的起始下标.
// 法2:效率高
int firstBadVersion(int n)
{
int l = 1; // low
int h = n; // high
int m = 0; // medium
while (l <= h)
{
m = l + (h - l) / 2;
if (isBadVersion(m) == false) { // 收缩右边界
l = m + 1;
} else if (isBadVersion(m) == true) { // 收缩左边界
h = m - 1;
}
}
return l; // 手法:这里是返回l
}
这上下两题真的非常重要,告知了一种二分求解的思路,最后的下标 l 就是 “第一个错误的版本”,或者说就是那个 limit 水线,或者说就是搜索插入位置的下标,二分查找用于其他算法题里时,就是用来快速找到这个水线的位置, 考试题优化也是考察了这里!
35. 搜索插入位置
int searchInsert(int *nums, int numsSize, int target)
{
int l = 0;
int h = numsSize - 1;
int m;
while (l <= h) {
m = l + (h - l) / 2;
if (nums[m] < target) {
l = m + 1;
}
else if (nums[m] >= target){
h = m - 1;
}
}
return l;
}
2389. 和有限的最长子序列
static int cmp(const void *pa, const void *pb) {
return *(int *)pa - *(int *)pb;
}
int binarySearch(int *arr, int arrSize, int target) {
int low = 1, high = arrSize;
while (low < high) {
int mid = low + (high - low) / 2;
if (arr[mid] > target) {
high = mid;
} else {
low = mid + 1;
}
}
return low;
}
int *answerQueries(int *nums, int numsSize, int *queries, int queriesSize, int *returnSize) {
qsort(nums, numsSize, sizeof(int), cmp);
int f[numsSize + 1];
f[0] = 0;
for (int i = 0; i < numsSize; i++) {
f[i + 1] = f[i] + nums[i];
}
int *answer = (int *)calloc(sizeof(int), queriesSize);
for (int i = 0; i < queriesSize; i++) {
answer[i] = binarySearch(f, numsSize + 1, queries[i]) - 1;
}
*returnSize = queriesSize;
return answer;
}