矩形嵌套

算法:贪心+动态规划

描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5
来源
经典题目

代码:

/*矩形嵌套 
#include <iostream>
#include <string>
#include <iomanip>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
struct dot
{
	int x,y; 
}s[1005];
int dp[1005];
int cmp(dot a,dot b)
{
	if(a.x!=b.x) return a.x<b.x;
}
int main()
{
	int i,j,k,m,n;
	cin>>k;
	while(k--)
	{
		cin>>n;
		for(i=0;i<n;i++)
		{
			cin>>s[i].x>>s[i].y;
			if(s[i].x>s[i].y)swap(s[i].x,s[i].y);
			dp[i]=1;
		}
		int ans=1;
		sort(s,s+n,cmp);//排序 
		for(i=1;i<n;i++)
		{
			for(j=i-1;j>=0;j--)
			{
				if(s[i].y>s[j].y&&s[i].x>s[j].x)//满足条件的取大值; 
				dp[i]=max(dp[i],dp[j]+1);
			}
			ans=max(dp[i],ans);//取最大值
		}
		if(n==0) cout<<"0"<<endl;
		else
		cout<<ans<<endl;
	}
	return 0;
}*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值