算法:贪心+动态规划
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5
来源
经典题目
代码:
/*矩形嵌套
#include <iostream>
#include <string>
#include <iomanip>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
struct dot
{
int x,y;
}s[1005];
int dp[1005];
int cmp(dot a,dot b)
{
if(a.x!=b.x) return a.x<b.x;
}
int main()
{
int i,j,k,m,n;
cin>>k;
while(k--)
{
cin>>n;
for(i=0;i<n;i++)
{
cin>>s[i].x>>s[i].y;
if(s[i].x>s[i].y)swap(s[i].x,s[i].y);
dp[i]=1;
}
int ans=1;
sort(s,s+n,cmp);//排序
for(i=1;i<n;i++)
{
for(j=i-1;j>=0;j--)
{
if(s[i].y>s[j].y&&s[i].x>s[j].x)//满足条件的取大值;
dp[i]=max(dp[i],dp[j]+1);
}
ans=max(dp[i],ans);//取最大值
}
if(n==0) cout<<"0"<<endl;
else
cout<<ans<<endl;
}
return 0;
}*/