MySQL数据库引擎

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wangyang1354/article/details/50740041

经常用MySQL数据库,但是,你在用的时候注意过没有,数据库的存储引擎,可能有注意但是并不清楚什么意思,可能根本没注意过这个问题,使用了默认的数据库引擎,当然我之前属于后者,后来成了前者,然后就有了这篇博文啦,希望可以帮助部分人了解MySQL引擎的一些特性。


存储引擎概念


MySQL中的数据用各种不同的技术存储在文件(或者内存)中。这些技术中的每一种技术都使用不同的存储机制、索引技巧、锁定水平并且最终提供广泛的不同的功能和能力。通过选择不同的技术,你能够获得额外的速度或者功能,从而改善你的应用的整体功能。

有哪些存储引擎


存储引擎主要有: 1. MyIsam , 2. Mrg_Myisam, 3. Memory, 4. Blackhole, 5. CSV, 6. Performance_Schema, 7. Archive, 8. Federated , 9 InnoDB

mysql> show engines\G
*************************** 1. row ***************************
      Engine: MyISAM
     Support: YES
     Comment: MyISAM storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 2. row ***************************
      Engine: MRG_MYISAM
     Support: YES
     Comment: Collection of identical MyISAM tables
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 3. row ***************************
      Engine: MEMORY
     Support: YES
     Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 4. row ***************************
      Engine: BLACKHOLE
     Support: YES
     Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 5. row ***************************
      Engine: CSV
     Support: YES
     Comment: CSV storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 6. row ***************************
      Engine: PERFORMANCE_SCHEMA
     Support: YES
     Comment: Performance Schema
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 7. row ***************************
      Engine: ARCHIVE
     Support: YES
     Comment: Archive storage engine
Transactions: NO
          XA: NO
  Savepoints: NO
*************************** 8. row ***************************
      Engine: FEDERATED
     Support: NO
     Comment: Federated MySQL storage engine
Transactions: NULL
          XA: NULL
  Savepoints: NULL
*************************** 9. row ***************************
      Engine: InnoDB
     Support: DEFAULT
     Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
          XA: YES
  Savepoints: YES
9 rows in set (0.00 sec)



存储引擎的主要特性


1. MyIsam


MyIsam 存储引擎独立于操作系统,也就是可以在windows上使用,也可以比较简单的将数据转移到linux操作系统上去。这种存储引擎在创建表的时候,会创建三个文件,一个是.frm文件用于存储表的定义,一个是.MYD文件用于存储表的数据,另一个是.MYI文件,存储的是索引。操作系统对大文件的操作是比较慢的,这样将表分为三个文件,那么.MYD这个文件单独来存放数据自然可以优化数据库的查询等操作。

1.  不支持事务,但是并不代表着有事务操作的项目不能用MyIsam存储引擎,可以在service层进行根据自己的业务需求进行相应的控制。
2.  不支持外键。
3.  查询速度很快。如果数据库insert和update的操作比较多的话采用表锁效率低(建议使用innodb)。
4.  对表进行加锁。


2. Mrg_Myisam



Merge存储引擎,是一组MyIsam的组合,也就是说,他将MyIsam引擎的多个表聚合起来,但是他的内部没有数据,真正的数据依然是MyIsam引擎的表中,但是可以直接进行查询、删除更新等操作。

比如:我们可能会遇到这样的问题,同一种类的数据会根据数据的时间分为多个表,如果这时候进行查询的话,就会比较麻烦,Merge可以直接将多个表聚合成一个表统一查询,然后再删除Merge表(删除的是定义),原来的数据不会影响。


3. Memory


Memory采用的逻辑介质是内存,响应速度应该是很快的,但是当mysqld守护进程崩溃的时候数据会丢失,另外,要求存储的数据是数据长度不变的格式,比如,Blob和Text类型的数据不可用(长度不固定的)。

使用Memory存储引擎情况:
  1. 目标数据比较小,而且非常频繁的进行访问,在内存中存放数据,如果太大的数据会造成内存溢出。可以通过参数max_heap_table_size控制Memory表的大小,限制Memory表的最大的大小。
  2. 如果数据是临时的,而且必须立即可用得到,那么就可以放在内存中。
  3. 存储在Memory表中的数据如果突然间丢失的话也没有太大的关系。
  【注】 Memory同时支持散列索引和B树索引,B树索引可以使用部分查询和通配查询,也可以使用<,>和>=等操作符方便数据挖掘,散列索引相等的比较快但是对于范围的比较慢很多。


4. Blackhole


“黑洞”存储引擎,他会丢弃所有的插入的数据,服务器会记录下Blackhole表的日志,所以可以用于复制数据到备份数据库。看其他的一些资料说:可以用来充当dummy master,利用blackHole充当一个“dummy master”来减轻master的负载,对于master来说“dummy master” 还是一个slave的角色,还有充当日志服务器等等。


5. CSV


可以将scv文件作为MySql的表来使用,但是不支持索引。CSV引擎表所有的字段都必须为非空的,创建的表有两个一个是CSV文件和CSM文件。


6. Performance_Schema


MySQL5.5以后新增了一个存储引擎,就是Performance_Schema,他主要是用来收集数据库服务器的性能参数。MySQL用户不能创建存储该类型的表。

他提供了以下的功能:
1. 提供进程等待的详细信息,包括锁、互斥变量、文件信息。
2. 保存历史的事件汇总信息,为Mysql服务器的性能做出详细的判断。
3. 对于新增和删除监控时间点都非常容易,并可以随意的改变Mysql服务器的监控周期

需要在配置文件my.cnf中进行配置才能开启。



7.  Archive


archive是归档的意思,仅仅支持插入和查询两种功能,在MySQL5.5以后支持索引功能,他拥有很好的压缩机制,使用zlib压缩库,在记录请求的时候实时的进行压缩,经常被用来作为仓库使用。适合存储大量的独立的作为历史记录的数据。拥有很高的插入速度但是对查询的支持较差。


8. Federated


Federated存储引擎是访问MySQL服务器的一个代理,尽管该引擎看起来提供了一个很好的跨服务器的灵活性,但是经常带来问题,默认是禁用的。


9. InnoDB


InnoDB是一个事务型的存储引擎,有行级锁定和外键约束,适用于以下的场合:

1. 更新多的表,适合处理多重并发的更新请求。
2. 支持事务。
3. 可以从灾难中恢复(通过bin-log日志等)。
4. 外键约束。只有他支持外键。
5. 支持自动增加列属性auto_increment。



MyISam和InnoDB实例比较



这里我选择两个比较重点的存储引擎实验下速度之类的性能,对比一下看看。


1. 创建两张表分别以MyIsam和InnoDB作为存储引擎。

create table testMyIsam(
    -> id int unsigned primary key auto_increment,
    -> name varchar(20) not null
    -> )engine=myisam;

create table testInnoDB( id int unsigned primary key auto_increment, name varchar(20) not null )engine=innodb;

两张表内容是一致的但是存储引擎不一样,下面我们从插入数据开始进行测试比较。


2.插入一百万数据


这里当然不能手动的插入,创建一个存储过程插入一百万的数据。
mysql> create procedure insertMyIsam()
    -> begin
    -> set @i = 1;
    -> while @i <= 1000000
    -> do
    -> insert into testMyIsam(name) values(concat("wy", @i));
    -> set @i = @i + 1;
    -> end while;
    -> end//
mysql> create procedure insertInnoDB()
    -> begin
    -> set @i = 1;
    -> while @i <= 1000000
    -> do
    -> insert into testInnoDB(name) values(concat("wy", @i));
    -> set @i = @i + 1;
    -> end while;
    -> end//


插入(一百万条)MyIsam存储引擎的表中的时间如下:
mysql> call insertMyIsam;
    -> //
Query OK, 0 rows affected (49.69 sec)


插入(一百万条)InnoDB存储引擎的表中的时间如下:
mysql> create procedure insertInnoDB()
    -> begin
    -> set @i = 1;
    -> while @i <= 1000000
    -> do 
    -> insert into testInnoDB(name) values(concat("wy", @i));
    -> set @i = @i + 1;
    -> end while;
    -> end//
Query OK, 0 rows affected (0.00 sec)

mysql> call insertInnoDB;
    -> //
Query OK, 0 rows affected (1 hour 38 min 14.12 sec)

我的心情是复杂的,这里当时默认的是开启了自动提交事务了,所以执行速度很慢,可以先将自动提交关闭,然后再调用存储过程插入一百万的数据,执行完成之后再开启自动提交,这样会快很多。
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> call insertInnoDB;
Query OK, 0 rows affected (36.52 sec)

mysql> set autocommit = 1;
Query OK, 0 rows affected (5.72 sec)




3. 查询数据总数目



下面是InnoDB的SQL语句的分析:
mysql> desc select count(*) from testInnoDB\G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: testInnoDB
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 997134
        Extra: Using index
1 row in set (0.03 sec)

下面是MyIsam(他的数据总数存储在其他的表中所以这里是没有影响行数的)的SQL语句的分析:
mysql> desc select count(*) from testMyIsam\G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: NULL
         type: NULL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: NULL
        Extra: Select tables optimized away
1 row in set (0.00 sec)



4. 查询某一范围的数据



4.1 没有索引的列

mysql> select * from testMyIsam where name > "wy100" and name < "wy100000";+-------+---------+
| id    | name    |
+-------+---------+
|  1000 | wy1000  |
| 10000 | wy10000 |
+-------+---------+
2 rows in set (0.43 sec)

mysql> select * from testInnoDB where name > "wy100" and name < "wy100000";+-------+---------+
| id    | name    |
+-------+---------+
|  1000 | wy1000  |
| 10000 | wy10000 |
+-------+---------+

4.2 有索引的列

对于使用MyIsam存储引擎的表:
<pre name="code" class="sql">select * from testMyIsam where id > 10 and id < 999999;
执行时间:
<pre name="code" class="sql">999988 rows in set (0.91 sec)
对于使用了InnoDB存储引擎的表:
select * from testInnoDB where id > 10 and id < 999999;
999988 rows in set (0.69 sec)

但是好像我没看出来多大的差距,可能是数据太少的原因吧。

mysql> select * from testInnoDB where name = "wy999999";
+--------+----------+
| id     | name     |
+--------+----------+
| 999999 | wy999999 |
+--------+----------+
1 row in set (0.20 sec)

mysql> select * from testMyIsam where name = "wy999999";
+--------+----------+
| id     | name     |
+--------+----------+
| 999999 | wy999999 |
+--------+----------+
1 row in set (0.16 sec)





没有更多推荐了,返回首页