全文搜索怎么给查询语句与文档相关性打分

博客介绍了全文搜索中如何计算查询语句与文档的相关性。通过词权重、向量空间模型(VSM)、去除干扰项、考虑文档权重及标准化等方法,评估查询与文档的相似性,提高搜索准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

朴素想法

用户输入一个查询query,query由若干词(term)组成,文档也由若干词(term)组成。那么怎么评判查询和文档的相关性的高低。

很朴素简单的想法就是文档中包含的term与查询query中包含的term,两者越多相同的则说明越相关。比如query为”animal cat”,文档一内容为”cat dog bird animal”,文档二内容为”cat dog bird tiger”,则认为query与文档二的相关性比文档一的高。

词权重

现在缺少词权重,比如一个文档中cat出现次数为2,而dog次数为1,那么cat的权重应该高一些。比如cat在10个文档出现和在1个文档出现也有不同的权重。

一般来说,可以由两方面来影响某文档某term的权重:
1. 该文档词频(term frequency):该文档出现该term的次数,tf越大说明越重要。
2. 文档词频(document frequency):包含该term的文档数,df越大说明越不重要,说明它更大众。

于是某个term的权重可定为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超人汪小建(seaboat)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值