Python实现可自定义更新策略的LRU Cache

本文介绍了LRU Cache(最近最少使用)算法的原理和在Python中的实现,包括如何使用双向链表和哈希表实现o(1)复杂度的更新和查找。此外,还探讨了如何在实现中加入自定义更新策略,允许根据时间戳或其他条件控制缓存的更新行为。提供了一个简短的LRU实现示例,并提供了完整的代码地址。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LRU Cache

  LRU(Least Recently Used),直译为“最近最少使用”,其实称“最久未被使用”更为恰当。这是一个非常重要的算法,在学操作系统的时候第一次遇见,在做leetcode的时候再次遇见,知道是用于做缓存的页面置换。但是LRU不仅仅用于这一个用途,凡是有数据更新策略的应用,LRU都可以是候选算法。比如redis、memcached、oracle等缓存和数据库、或在其它应用场景方面也有类似的需求。总之要达到的目的是:保持新鲜,剔除陈旧,减少交换。
  
- 算法原理
  需求描述:
  实现LRU算法,主要工作是实现LRU Cache的数据结构,或者说实现这种类。lru缓存的主要操作有两个,一个是get,获取数据是否在cache中,如果在,则把该数据放到缓存最前面;另一个的主要操作是set,在缓存中存放某个值,并且存放到最前面,如果缓存中有这个值,则更新,如果缓存满了,则删除缓存中最后面的值。总之,缓存中最前面的值是最近被使用过的,缓存有大小限制,超出要删除最久未被使用的值。要求所有操作时间复杂度均为o(1)。
  分析:
  直觉看上去,数据从近到远以此排列,这是一个线性结构,列表(顺序线性表/数组),链表,队列,栈?
  先考虑目的要求,要求最近使用的在最前,最久未使用的在最后,队列是FIFO的结构,栈是FILO的结构,都不符合要求。
  再考虑数据更新,要求o(1)复杂度下,把数据更新到最前面。列表被排除,无法满足要求。只有链式结构才可以在o(1)下完成更新。
  最后考虑数据查找,链式结构下,数据查找复杂度为o(n),又不能满足o(1)的复杂度。看来必须依赖其它数据结构的辅助。
  用列表完成o(1)的更新,不可能啊,想想看,将数组中一个位置的数挪到最前面,那这个位置之前的数据都要后移一位,怎样都不能实现o(1)的开销。那就考虑链式结构下如果实现o(1)的查找吧。通常情况下,查找链表中一个位置上的值,需要从头结点开始,依次后移查找。如果有尾结点也一样依次向前移动,时间复杂度为o(n)。那么我们能不能将每个结点的位置记下来,直接去存放结点的那个位置查找呢?哈希表派上了用场。哈希表存放结点位置的对应关系,能够满足o(1)下的数据查找,同时链表能够实现o(1)的数据更新,符合预想的要求。
  总结:在Cache结构中,需要一个hash table,用于存放位置关系,需要一个链表,用于更新数据,链表我们使用双向链表。大体结构为:
  这里写图片描述

class LRU:
    var table = {}
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值