描述
Dr.Kong设计的机器人卡多越来越聪明。最近市政公司交给卡多一项任务,每天早晨5:00开始,它负责关掉ZK大道右侧上所有的路灯。
卡多每到早晨5:00准会在ZK大道上某盏路灯的旁边,然后他开始关灯。每盏灯都有一定的功率,机器人卡多有着自觉的节能意识,它希望在关灯期间,ZK大道右侧上所有路灯的耗电量总数是最少的。
机器人卡多以1m/s的速度行走。假设关灯动作不需要花费额外的时间,因为当它通过某盏路灯时就顺手将灯关掉。
请你编写程序,计算在给定路灯设置,灯泡功率以及机器人卡多的起始位置的情况下,卡多关灯期间,ZK大道上所有灯耗费的最小能量
#include<stdio.h>
#include<string.h>
#define maxn 1010
int c[maxn][maxn];
int sum[maxn][maxn];
int d[maxn],w[maxn];
int f[maxn][maxn][2];
int min(int a,int b)
{
return a<b?a:b;
}
int main()
{
int n,v;
int i,j;
while(scanf("%d %d",&n,&v)!=EOF)
{
for (i=1;i<=n;++i)
scanf("%d %d",&d[i],&w[i]);
memset(sum,0,sizeof(sum));
for (i=1;i<=n;++i)
for (j=i;j<=n;++j)
sum[i][j]=sum[i][j-1]+w[j];
for (i=1;i<=n;++i) //从任一位置i向左到下一个节点j的权值
for (j=i;j<=n;++j)
c[i][j]=sum[1][n]-sum[i][j];
f[0][0][0]=f[0][0][1]=0; //0left 1right
for (i=1;i<=v-1;++i) //dp 的边界
{
f[i][0][0]=f[i-1][0][0]+c[v-i+1][v]*(d[v-i+1]-d[v-i]); //记录从 v-i+1 到 v-i 的变化
f[i][0][1]=f[i][0][0]+c[v-i][v]*(d[v]-d[v-i]); //记录从 v到 v-i 的变化
}
for (j=1;j<=n-v;++j)
{
f[0][j][1]=f[0][j-1][1]+c[v][v+j-1]*(d[v+j]-d[v+j-1]);
f[0][j][0]=f[0][j][1]+c[v][v+j]*(d[v+j]-d[v]);
}
for (i=1;i<=v-1;++i)
for (j=1;j<=n-v;++j) //dp求最优解
{
f[i][j][0]=min(f[i-1][j][0]+c[v-i+1][v+j]*(d[v-i+1]-d[v-i]),f[i-1][j][1]+c[v-i+1][v+j]*(d[v+j]-d[v-i]));
f[i][j][1]=min(f[i][j-1][1]+c[v-i][v+j-1]*(d[v+j]-d[v+j-1]),f[i][j-1][0]+c[v-i][v+j-1]*(d[v+j]-d[v-i]));
}
printf("%d\n",min(f[v-1][n-v][1],f[v-1][n-v][0]));
}
return 0;
}